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Introduction and motivation

A panel stochastic frontier model is often expressed as

yit = x ′
itβ − uit + vit ,

where yit is the output for firm i = 1, . . . ,N at time
t = 1, . . . ,T , and uit ≥ 0 represent inefficiencies.

In the literature, a distributional assumption of uit is often
required, and a typical assumption is N+(0, σ2

u).

Information conveyed by a sample of (yit , xit ) is not
enough for estimating uit and its distribution.

In some applied studies, it is sometimes assumed that
uit ∼ N+(0, σ2

u) where the variance is driven by some
determinants via a form such as log σ2

u = z ′
itα (Lai and

Kumbhakar, 2018, Econ Letters).
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Introduction and motivation
There is a large body of literature studying the impact of
determinant or environmental variables on inefficiencies:
Kim and Schmidt (2008, JoE), Amsler, Prokhorov, and
Schmidt (2017, JoE), Kutlu, Tran and Tsionas (2019, JoE),
Lai and Kumbhakar (2018, EJOR), and Centorrino and
Pérez-Urdiales (2023, JoE).

It is unknown whether zit is significant or not, and
whether each variable of zit is significant or not.

There is no way to justify the analytical form of

uit = g(zit )

Our goal is to test the significance of zit and the
significance of each individual variable of zit .

How to handle nuisance parameters and boundary
constraints?
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Estimation of the alternative model
We assume the transient inefficiency is an unknown
function of zit :

yit = x⊤
it β − uit + vit ,

uit = δi + g(zit )

where δi ∼ N+(0, σ2
u) and vit ∼ N (0, σ2

v).

g(·) is deterministic, continuous, and nonlinear

A key challenge is to ensure that g(zit ) is nonnegative,
reflecting the nature of inefficiency.

We impose an additive structure on g(zit ) by modeling it
as the sum of q separate univariate functions:

g(zit ) =

q∑
ℓ=1

gℓ(zit ,ℓ)
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Approximation by Bernstein polynomials

Each function gℓ(zit ,ℓ) is approximated as

gℓ(zit ,ℓ) ≈ f (zit ,ℓ; k)′αℓ

where f (zit ,ℓ; k) is the (k + 1)-dimensional vector of
Bernstein basis functions

f (zit ,ℓ; k) =
(

b0(zit ,ℓ, k), . . . ,bk(zit ,ℓ, k)
)′
,

Each basis function bj(z, k) is defined as

bj(z, k) =
(

k
j

)
zj(1 − z)k−j , for j = 0, . . . , k.

Basis functions form a partition of unity over the unit
interval [0, 1], satisfying

∑k
j=0 bj(z, k) = 1 for all z ∈ [0, 1].
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Approximation by Bernstein polynomials

To ensure compatibility with the Bernstein basis, each
determinant zit ,ℓ must be rescaled to lie within [0, 1].

Following Wang and Ghosh (2012), we apply an inflated
min-max transformation:

z∗
it ,ℓ =

zit ,ℓ − (aℓ − sℓ)
(bℓ + sℓ)− (aℓ − sℓ)

,

where aℓ = mini,t zit ,ℓ, bℓ = maxi,t zit ,ℓ, and sℓ is the sample
standard deviation of zit ,ℓ across all i and t .

The function gℓ(z) defined on (0, 1) is approximated by

Bk(gℓ; z) =
k∑

j=0

gℓ(j/k)
(

k
j

)
zj(1 − z)k−j .

The target function is a weighted sum of fixed basis
functions evaluated at equal distance nodes.
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Parameterisation
The stochastic frontier model becomes

yit = x ′
itβ −

q∑
ℓ=1

f (zit ,ℓ; k)′αℓ − δi + vit ,

The term
∑q

ℓ=1 f (zit ,ℓ; k)′αℓ captures the additive
inefficiency effects from all determinants zit ,ℓ, . . . , zit ,q,
each represented via a Bernstein polynomial basis.

The term
∑q

ℓ=1 f (zit ,ℓ; k)′αℓ captures the cumulative
inefficiency effects from all determinants zit ,1, . . . , zit ,q,
each represented via a Bernstein polynomial basis.

Let α = (α′
1,α

′
2, . . . ,α

′
q)

′ denote the full coefficient vector
obtained by stacking the Bernstein coefficients across all
determinants.

Restrictions are α ≥ 0.
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Estimation
The distribution of the composed error term eit = vit − uit

depends on the specified distributions for vit and uit .

yit = x ′
itβ −

q∑
ℓ=1

f (zit ,ℓ; k)′αℓ − δi + vit ,

As g(zit ) is a deterministic function, the stochastic part of
the inefficiency component is given by δi.

The density fε(·) is given by the convolution of the density
of vit with the reflected density of δi:

fε(ε) =
∫ ∞

0
fv(ε+ δ) fδ(δ) dδ.

The likelihood is

L
(
β,α,θu,θv

)
=

T∑
t=1

N∑
i=1

log fε

(
yit − x ′

itβ +

q∑
ℓ=1

f (zit ,ℓ; k)′αℓ

)
.
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Likelihood
The parameters (β,α,θu,θv) are estimated by
maximizing this log-likelihood, subject to the constraint
α ≥ 0.

To choose the optimal order k, we estimate the model
over a grid of candidate values and select the one that
minimises BIC, computed as

BIC =− 2L
(
β̂, α̂, θ̂u, θ̂v

)
+
(

p + q(k + 1) + dim(θu) + dim(θv)
)
log(NT ),

where L denotes the maximized log-likelihood, p is the
number of input variables excluding the intercept, and
the last term accounts for the total number of model
parameters.
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Testing the effects of inefficiency determinants

Rewrite the model in compact vector-matrix form:

y = Xβ − Fkα− Dδ + v, (1)

Test joint significance

H0 : α = 0, (2)

against the alternative that at least one component of α is
strictly positive.

The test is based on the classical F statistic:

F =
(SSR0 − SSR1)/r

SSR1/(NT − p − 1 − r)
, (3)

where SSR0 = ε̂′0ε̂0 is the sum of squared residuals under
H0.
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Estimation
These residuals are obtained by projecting y onto the
orthogonal complement of the column space of X:

ε̂0 = MXy, and MX = INT − X(X′X)−1X′

The number of restrictions in the F stats is r = q(k + 1),
corresponding to the Bernstein coefficients that are set to
zero under H0.

The unrestricted sum of squared residuals appearing in
the F stats is SSR1 = ε̂′1ε̂1, where ε̂1 = MXy + MXFkα̂.

α̂ is obtained by solving the following constrained least
squares problem:

min
α≥0

{(
MXy + MXFkα

)′(MXy + MXFkα
)}

.

11 / 33



Nuisance parameters

The parameters contained in the distributions of δi and
vit (denoted as θu and θv) are nuisance parameters.

Although the null distribution of the F -stats depends on
θu and θv , they are not of direct interest in the hypothesis
being tested.

We define the point null hypothesis

H0(θ
∗
u,θ

∗
v) : α = 0, θu = θ∗

u, θv = θ∗
v , (4)

All inefficiency effects are absent and that the error term
parameters (nuisance) take fixed values θ∗

u and θ∗
v .

The reference distribution for the F -stats under this point
null can be readily obtained using simulation.
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Nuisance parameters

When nuisance parameters are not assumed to be known,
the original null hypothesis (H0) can be expressed as

H0 :
⋃

(θ∗
u ,θ

∗
v )

H0(θ
∗
u,θ

∗
v),

It does not fix the nuisance parameters at specific values
but instead encompasses all possible combinations.

Accordingly, H0 can be rejected only if it is rejected at
every admissible value of (θ∗

u,θ
∗
v).

We therefore aim to construct an exact simulation-based
test of the joint point null hypothesis.

We will develop a maximized version that accounts for
the nuisance parameters by computing the largest
simulated p-value over a grid of plausible values.
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Some properties of the test procedure
Proposition 1: Under the point null hypothesis H0

(
θ∗

u,θ
∗
v

)
, the

F stats defined as

F =
(SSR0 − SSR1)/r

SSR1/(NT − p − 1 − r)
,

has the same distribution as the random variable

F̃
(
θ∗

u,θ
∗
v

)
=

(
S̃SR0 − S̃SR1

)
/r

S̃SR1/(NT − p − 1 − r)
,

where each quantity depends on
(
θ∗

u,θ
∗
v

)
through the

simulated residual vectors

ε̃0 = MX
(
−Dδ̃ + ṽ

)
, ε̃1 = ε̃0 + MXFkα̃.

Remark 1: The minimisation defining SSR1 and S̃SR1 is purely
deterministic. Therefore, both F and F̃ (θ∗

u,θ
∗
v) are

deterministic functions of their corresponding residual
vectors.
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Explanation

This result implies that even if the null distribution of the
F stats is non-standard, it can be simulated exactly for any
given values of X, Fk and nuisance parameters (θu,θv).

The entire distribution of F under H0(θ
∗
u,θ

∗
v) can be

generated through repeated simulation of ε̃0 and
re-estimation of the constrained model.

In order to obtain exact p-values without relying on a
large number of simulations, we use the Monte Carlo
(MC) test framework of Dwass (1957), Barnard (1963) and
Birnbaum (1974).
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Proposition 2: Assume that the data y follow the stochastic
frontier model in (1), and consider the F stats defined in (3).
Let F̃1(θ

∗
u,θ

∗
v), . . . , F̃B−1(θ

∗
u,θ

∗
v) denote B − 1 draws from the

distribution of F̃ (θ∗
u,θ

∗
v) under H0(θ

∗
u,θ

∗
v). The Monte Carlo

p-value is defined as

p̃(F |θ∗
u,θ

∗
v) =

B − Rank(F |θ∗
u,θ

∗
v) + 1

B
,

where Rank(F |θ∗
u,θ

∗
v) is given by

Rank(F |θ∗
u,θ

∗
v) = 1 +

B−1∑
b=1

1
{

F > F̃b(θ
∗
u,θ

∗
v)
}
,

If αB is an integer, then under H0(θ
∗
u,θ

∗
v), the test that

rejects H0 when p̃(F |θ∗
u,θ

∗
v) ≤ α has exact size α; that is,

Pr
(

p̃(F |θ∗
u,θ

∗
v) ≤ α |H0(θ

∗
u,θ

∗
v)
)
= α.
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Maximised Monte Carlo Test:

This proposition provides an exact test under fixed
nuisance parameters, while in practice these parameters
are typically unknown.

To address this issue, we adopt the maximised MC (MMC)
testing framework of Dufour (2006), which constructs a
test that controls size uniformly over a set of plausible
values for the nuisance parameters.
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Proposition 3:
Let p̃(F ) denote the maximised Monte Carlo (MMC) p-value:

p̃(F ) = sup
(θ∗

u ,θ
∗
v )∈S

p̃
(

F |θ∗
u,θ

∗
v

)
,

where p̃
(

F |θ∗
u,θ

∗
v

)
is the MC p-value from Proposition 2, and

S is a set of plausible values for the parameter vectors (θu,θv).
If αB is an integer, then the test that rejects H0 whenever
p̃(F ) ≤ α has level at most α, that is

Pr
(

p̃(F ) ≤ α |H0
)
≤ α.

To implement the MMC test, we define the search domain
S as a linear path connecting the MLEs of the nuisance
parameters obtained under the alternative model and
those estimated under the joint null hypothesis.
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Testing marginal significance

To test whether a specific inefficiency determinant zit ,ℓ

has an effect, we consider a null hypothesis that restricts
only the corresponding coefficients, while leaving the
others unrestricted:

H ℓ
0 : αℓ = 0, (5)

for ℓ ∈ {1, . . . ,q}, against the alternative that at least one
element of αℓ is strictly positive.

The associated restricted sum of squared residuals is
obtained by solving the constrained least squares
problem

SSR0,ℓ = min
α≥0
αℓ=0

(
MXy + MXFkα

)′ (
MXy + MXFkα

)
, (6)
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Test statistic
The corresponding F stats is

Fℓ =
(SSR0,ℓ − SSR1)/(k + 1)
SSR1/(NT − p − 1 − r)

, (7)

where SSR1 is the unrestricted residual sum of squares,
computed as in the joint test in Proposition 1

The null distribution of Fℓ also depends on α−ℓ

We address this additional nuisance parameter problem
by introducing a point null hypothesis of the form:

H ℓ
0(α

∗
−ℓ) : αℓ = 0, α−ℓ = α∗

−ℓ,

where α∗
−ℓ denotes the Bernstein coefficients for all other

determinants.

These values are chosen to satisfy the broader null H ℓ
0 ,

so that H ℓ
0(α

∗
−ℓ) ⊆ H ℓ

0
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Test statistic for marginal significance

We introduce a test statistic in the form of an F-ratio
tailored to this point null hypothesis:

F ∗
ℓ =

(SSR∗
0,ℓ − SSR1)/(k + 1)

SSR1/(NT − p − 1 − r)
, (8)

SSR1 is the unrestricted residual sum of squares. SSR∗
0,ℓ

denotes the residual sum of squares under H ℓ
0(α

∗
−ℓ):

SSR∗
0,ℓ =

(
MXy + MXFk

−ℓα
∗
−ℓ

)′ (
MXy + MXFk

−ℓα
∗
−ℓ

)
,

The restriction αℓ = 0 is imposed directly, and the
remaining coefficients α−ℓ are fixed at the specified
values α∗

−ℓ.
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Test statistic for marginal significance

As H ℓ
0(α

∗
−ℓ) imposes stronger restrictions than H ℓ

0 , we
have SSR1 ≤ SSR0,ℓ ≤ SSR∗

0,ℓ, which in turn implies
Fℓ ≤ F ∗

ℓ . Moreover, since H ℓ
0(α

∗
−ℓ) ⇒ H ℓ

0 , it follows that

Pr
(

Fℓ ≥ c |H ℓ
0

)
≤ Pr

(
F ∗
ℓ ≥ c |H ℓ

0(α
∗
−ℓ)
)
,

for any c ∈ R.

This inequality ensures that using the distribution of F ∗
ℓ

as a reference yields a conservative test for H ℓ
0 .

With this bounding approach, we actually use H ℓ
0(α

∗
−ℓ) to

test H ℓ
0 .

For further discussion and examples of such bounding
procedures, see Dufour and Khalaf (2002) and Luger
(2025).
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Point null hypothesis

We now incorporate the error term parameters and
consider a fully specified point null hypothesis:

H ℓ
0(α

∗
−ℓ,θ

∗
u,θ

∗
v) : αℓ = 0, α−ℓ = α∗

−ℓ, θu = θ∗
u, θv = θ∗

v .

In this formulation, the other Bernstein coefficients and
error term parameters are all nuisance and fixed.

H ℓ
0(α

∗
−ℓ) can be viewed as the union over the admissible

values of the error term parameters parameters:

H ℓ
0(α

∗
−ℓ) =

⋃
θ∗

u ,θ
∗
v

H ℓ
0(α

∗
−ℓ,θ

∗
u,θ

∗
v).

We define the simulated test statistic

F̃ ∗
ℓ (θ

∗
u,θ

∗
v) =

(S̃SR
∗
0,ℓ − S̃SR1)/(k + 1)

S̃SR1/(NT − p − 1 − r)
,
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Proposition 4
Let p̃(Fℓ) denote the MMC p-value for testing H ℓ

0 , defined as

p̃(Fℓ) = sup
(θ∗

u ,θ
∗
v )∈S

p̃(Fℓ |θ∗
u,θ

∗
v),

where S is a set of plausible values for the error term
parameters, and p̃(Fℓ |θ∗

u,θ
∗
v) is the MC p-value given by

p̃(Fℓ |θ∗
u,θ

∗
v) =

B − Rank(Fℓ |θ∗
u,θ

∗
v) + 1

B
,

with rank Rank(Fℓ |θ∗
u,θ

∗
v) = 1 +

∑B−1
b=1 1{Fℓ > F̃ ∗

ℓ,b(θ
∗
u,θ

∗
v)}. If

αB is an integer, then the test that rejects H ℓ
0 when p̃(Fℓ) ≤ α

has level at most α, that is

Pr
(

p̃(Fℓ) ≤ α |H ℓ
0

)
≤ α.
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Test implementation

To implement the point null hypothesis H ℓ
0(α

∗
−ℓ), we must

specify the fixed value α∗
−ℓ for the Bernstein coefficients

associated with all other inefficiency determinants.

In our implementation, we set α∗
−ℓ equal to the vector of

estimated coefficients α̂−ℓ obtained by solving the
constrained least squares problem in (6), where the
restriction αℓ = 0 is imposed.

As in the joint test, we restrict the MMC search over error
term parameters to a one-dimensional path connecting
the MLEs from the full model and the complete null
model, where all αℓ are set to zero.
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China’s Energy Consumption Frontier and Inefficiency

Sample data: N = 30 provinces; and T = 19 (2003–2021)

We model the minimum energy consumption required to
produce energy services using a stochastic frontier model:

yit = x′
itβ + uit + vit ,

where
uit = δi + g(zit ).

Frontier represents the minimum level of energy
consumption that could be achieved for a given level of
output and input mix, assuming full efficiency.

It is determined by a set of variables:
Energy price, GDP, average household size, population,
climate (proxied by heating and cooling degree days),
transport infrastructure (total number of vehicles), and
industrial structure (total shares of the industrial and
service sectors) 26 / 33



The frontier identifies the benchmark of best practice,
which is the amount of energy a province would consume
if it were operating efficiently, given its economic and
structural characteristics

As discussed by Zhang and Adom (2018), the selected
variables help explain the scale of required energy inputs,
and these variables indicate how much energy would be
needed in the absence of inefficiency.

Determinant of inefficiencies
Inefficiency term uit captures the extent to which a
province’s energy consumption exceeds the minimum
required level.

Determinants include: foreign direct investment, human
capital (proxied by average education), GDP per capita,
urbanization, and policy implementation capacity
(proxied by the size of green parkland), and energy price.
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Inclusion of energy price in the frontier function captures
substitution or conservation effects in cost-minimizing
behavior.

Its inclusion in the inefficiency term reflects behavioral or
institutional responses that lead to deviations from the
efficient frontier.

If price is highly regulated and uniform across provinces,
its inclusion in the inefficiency may dominate the frontier
effect.
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Estimation
To test the joint significance of the six variables in the
inefficiency term, we estimated the model under the
alternative hypothesis.

The optimal order of the Bernstein polynomials was
determined to be 4 based on BIC.

Table 1: Estimates of Bernstein polynomial coefficients and
individual significance.

Variable Bernstein coefficients F stats p-value

FDI 1.8505 0.9719 0.4609 2.5939 2.7350 2.2886 0.874
Human capital 1.4088 5.3167 0.2965 2.2574 1.5465 7.1013 0.030
GDP per capita 1.5600 6.6566 1.6660 1.6166 3.3575 2.3666 0.842
Urbanization 1.5530 1.3068 0.7733 4.0921 2.8213 2.9328 0.776
Policy 0.1252 0.8341 1.0341 2.2836 0.2883 2.3854 0.940
Energy price 0.4967 0.7936 2.1269 0.4859 2.0065 8.0805 0.018
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Estimation and testing

Based on the estimates of β̂, the Bernstein coefficients,
and the variance parameters σ̂2

η and σ̂2
v , we computed the

estimates of δi, for i = 1, 2, . . . ,N , using the approach
outlined in Jondow et al. (1982) and Greene (2005).

The unexplained inefficiencies δ̂i as a percentage of the
overall inefficiencies ûit are around 0.1% to 0.5%.

The joint test has a p-vale of 0.002, indicating that the 6
determinant variables are jointly significant.

Testing results for marginal significance show that
“human capital” and “energy price”.
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China’s regulation of energy

2003–2010s: Coal and oil products moved toward market
linkages; electricity tariffs remained administratively set
but began separating wires (regulated whole sale) from
energy (retail market).

2011–2016: Gas pricing pivoted to city-gate reform; oil
pricing rules were tightened and made more responsive
(with a 2016 floor).

2015 onward: Document #9 anchored a market-based
wholesale power push; by 2021, coal-power prices were
largely market-set with wider floating bands to pass
through fuel costs–especially during the power crunch.

2021: full marketization of coal-fired on-grid tariffs.
Abolished fixed benchmark pricing; all coal power traded
via the market, with a ±20% floating band (no upper limit
for energy-intensive users).
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Renewable energy prices

2009–2018: Feed-in tariffs (FITs) for wind and solar set by
NDRC, differentiated by resource zones, with subsidies
funded via a renewable energy surcharge.

From 2019: Shifted toward competitive auctions, lowering
subsidy levels and integrating renewables into emerging
power markets.

Policy implication

Deregulation of energy price

Promoting renewable energy
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Conclusion
Maximised Monte Carlo test for the significance of
inefficiency determinants (joint and marginal tests)

Inefficiencies are approximated by Bernstein polynomials

Our test is implemented by carrying out the associated
testing for point hull hypothesis among feasible regions

Future research
Heterogeneous random effects or fixed effects among
individuals

Different Bernstein orders for different variables
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