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Outline

Weeks 4-7:

Derivative: Single variable

Partial derivative: multiple variables

Optimisation: stationary points

Optimisation with constraint: Lagrange method

This week:

Indefinite and definite Integration

Differential Equation
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Integration as anti-differentiation

Differentiation of F (x) gives its derivative F ′(x), which is
also a function of x.

We can treat F ′(x) as giving the slope of the tangent line at
the point x on the graph of y = F (x).

For a given function f (x), integration is to find a function
F (x), such that F ′(x) = f (x).

As the derivative of any constant is zero, we can only
determine F (x) up to an additive constant.

Integration as taking anti-derivative of f (x) is
∫

f (x)dx

Integration as anti-derivative

The outcome of integration is not just one function, but a
group of functions, all having the same derivative f (x). As
such it is called an indefinite integral of f (x).

To integrate f (x) = x w.r.t. x, we know that (x2)′ = 2x. So,
(1

2 x2)′ = x. This integration is written as
∫

xdx = 1
2 x2 + c
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How to solve an indefinite integral
As the derivative of xn is nxn−1, therefore,(

n−1xn)′ = xn−1

Thus, for integer n ̸= −1, we have∫
xn−1dx = n−1xn + C∫
xndx = (n + 1)−1xn+1 + C

How to integrate x−1? Note that (ln x)′ = x−1, thus∫
x−1dx = ln x + C , for x > 0.
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Primitive function
In general, we can write the integral of f (x) as∫

f (x)dx = F (x) + C

F (x) is called the primitive function of f (x).

Sometimes we know the primitive function of f (x) exists,
but we don’t know its analytical form. For example,

f (x) =
1√
2π

e−0.5x2
.

Its primitive function exists, but its analytical form is
unknown
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Indefinite integral: Examples

f (x) F (x)
∫

f (x)dx
k (constant) kx kx + C
x 1

2 x2 1
2 x2 + C

xn (n ̸= −1) (n + 1)−1xn+1 (n + 1)−1xn+1 + C
ex ex ex + C
ax (a ̸= 1) ax

ln(a)
ax

ln(a) + C
x−1 (x > 0) ln(x) ln(x) + C
x−1 (x ̸= 0) ln(|x|) ln(|x|) + C
sin(x) − cos(x) − cos(x) + C
cos(x) sin(x) sin(x) + C

We can verify that for each f (x) given above, F ′(x) = f (x)

In general, it is difficult to find F (x).

Sometimes it is impossible to derive an analytical form of
F (x).
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Sum rule: Indefinite integral
If F ′

1(x) = f1(x) and F ′
2(x) = f2(x), then∫

(f1(x)+f2(x))dx =

∫
f1(x)dx+

∫
f2(x)dx = F1(x)+F2(x) + C

We can prove it by the sum rule of derivatives:

F1(x) + F2(x) is a primitive of f1(x) + f2(x)

Subtraction rule: Indefinite integral∫
(f1(x)−f2(x))dx =

∫
f1(x)dx−

∫
f2(x)dx = F1(x)−F2(x) + C

with F ′
1(x) = f1(x) and F ′

2(x) = f2(x)

We can prove by subtraction rule of derivatives:

F1(x)− F2(x) is a primitive of f1(x)− f2(x)
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Product with constant
For any constant K ∈ (−∞,∞), we have∫

K · f (x)dx = K ·
∫

f (x)dx = K · F (x) + C ,

We can prove it by the product rule for differentiation

K · F (x) is a primitive of K · f (x)

For any F (x) such that F ′(x) = f (x), we have∫
f (x)dx = F (x) + C

Differentiation Integration
Sum Rule ⇔ Sum Rule
Subtraction Rule ⇔ Subtraction Rule
Product Rule (Constant) ⇔ Product Rule (Constant)
Product Rule (General) ⇔ ?
Chain Rule ⇔ ?
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Integration by parts

Differentiation Integration
Sum Rule ⇔ Sum Rule
Subtraction Rule ⇔ Subtraction Rule
Product Rule (Constant) ⇔ Product Rule (Constant)
Product Rule (General) ⇔ Integration by Parts
Chain Rule ⇔ ?

Let f (x) = u(x) · v(x). By the product rule, we have

f ′(x) = u′(x)v(x) + u(x)v′(x)

and therefore

u(x)v′(x) = f ′(x)− u′(x)v(x)=:f ′(x)− g ′(x)∫
u(x)v′(x)dx = f (x)− g(x) + C = f (x)− (g(x) + C̃)

where C and C̃ = −C are arbitrary constants.∫
u(x)v′(x)dx = u(x) · v(x)−

∫
u′(x)v(x)dx
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Example
Use integration by parts to evaluate

∫
xexdx.

Note that xex = u(x) · v′(x), where

u(x) = x, v(x) = ex.

and u′(x) = 1.

∫
x︸︷︷︸

u(x)

· ex︸︷︷︸
v′(x)

dx = x︸︷︷︸
u(x)

· ex︸︷︷︸
v(x)

−
∫

1︸︷︷︸
u′(x)

· ex︸︷︷︸
v(x)

dx

=x · ex − (ex + C̃) = xex − ex + C

where C = −C̃ is an arbitrary constant.
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Integration by Substitution

Differentiation Integration
Sum Rule Sum Rule
Subtraction Rule Subtraction Rule
Product Rule (Constant) Product Rule (Constant)
Product Rule (General) Integration by Parts
Chain Rule Integration by Substitution

Let g(x) = F (φ(x)). By the chain rule we have

g ′(x) = f (φ(x))φ′(x)

By definition, we have∫
f (φ(x))φ′(x)dx = g(x) + C = F (φ(x)) + C
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Integration by Substitution∫
f (φ(x))φ′(x)dx = F (φ(x)) + C

dx = infinitely small changes in x

dφ(x) = resulting infinitely small changes in φ(x)

φ′(x) = dφ(x)
dx ⇒ dφ(x) = φ′(x)dx

Substitute dφ(x) = φ′(x)dx∫
f (φ(x))φ′(x)dx =

∫
f (φ(x))dφ(x)

Substitute z = φ(x)∫
f (z)dz = F (z) + C = F (φ(x)) + C

12 / 35



Example
Use integration by substitution to evaluate

∫
2xex2

dx.

Write 2xex2
= ex2 · (2x) = f (φ(x)) · φ′(x) with

φ(x) = x2, f (x) = ex.

A primitive of f (x) = ex is F (x) = ex .∫
2xex2

dx = F (φ(x)) + C = ex2
+ C

where C is an arbitrary constant.
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Definite Integrals

Let f (x) to be a continuous function on [a,b]

F ′(x) = f (x), x ∈ (a,b): F (x) is the primitive function on
(a,b)

The definite integral of f (x) over [a,b] is∫ b

a
f (x)dx = F (b)− F (a)

It does not depend on the choice of F

Result is just a (real) number, not a function

F (b)− F (a) can be expressed as [F (x)]ba or F (x)
∣∣∣x=b

x=a
or

[F (x)]x=b
x=a
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Definite integral as an area
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Definite integral as an area

Let ∆t = b−a
M , t0 = a, and ti = a + i ·∆t , for i = 1, . . . ,M

Blue Area ≈f (t1) · (t1 − t0) + f (t2) · (t2 − t1)

+ . . .+ f (tM ) · (tM − tM−1)

=
∑

a<ti≤b

f (ti) · (ti − ti−1)

∆t↓0 (M→∞)−−−−−−−−−−→
∫ b

a
f (t)dt
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Definite Integral as summation

∑
a<ti≤b

f (ti) · (ti − ti−1︸ ︷︷ ︸
∆t

)
∆t↓0−−−→

∫ b

a
f (t)dt = Blue Area
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Sum Rule∫ b

a
(f1(t)+f2(t))dt =

∫ b

a
f1(t)dt +

∫ b

a
f2(t)dt

Subtraction rule∫ b

a
(f1(t)−f2(t))dt =

∫ b

a
f1(t)dt −

∫ b

a
f2(t)dt

Multiplication by a constant

∫ b

a
K · f1(t)dt = K ·

∫ b

a
f1(t)dt , K ∈ (−∞,∞)
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Total Cost Function
Consider a firm that produces x units of jackets.

Its fixed cost is $240

Its variable cost for each unit is $60

Total cost (function) in dollars:

60 + . . .+ 60︸ ︷︷ ︸
x times

+ 240︸︷︷︸
Fixed Cost

= 60x + 240

Functional variable cost
Assume the fixed cost is $240

Cost of one additional unit at production x is:

f (x) = 60 + x, x = 0, 1, . . .

Let F (x) denote the total cost. At the production of x
units, the cost of an additional unit is:

F (x + 1)− F (x) = f (x) = 60 + x
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Our Example
Beginning with f (x) = x + 60 with a primitive
G(x) = 1

2 x2 + 60x, we have the total cost function as

F (x) =F (x)− F (0)︸ ︷︷ ︸
Variable Cost

+ F (0)︸︷︷︸
Fixed Cost

=

∫ x

0
f (t)dt + F (0)

=(G(x)− G(0)) + F (0)

=

(
1
2

x2 + 60x − 0
)
+ 240

=
1
2

x2 + 60x + 240

20 / 35



Consumer Surplus

market demand Q

market price

P = 100 − Q

in equilibrium:

P0 = 40, Q0 = 60

CS =

∫ Q0

0
(P(Q)− P0)dQ =

∫ Q0

0
P(Q)dQ︸ ︷︷ ︸

Willing to Pay

− P0 · Q0︸ ︷︷ ︸
Actual Pay
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Calculate CS
Recall P0 = 40, Q0 = 60 and

P(Q) = 100 − Q

which has a primitive F (Q) = 100Q − 1
2 Q2

CS =

∫ Q0

0
P(Q)dQ − P0 · Q0

=(F (Q0)− F (0))− P0 · Q0

=(F (60)− F (0))− 40 · 60

=4200 − 2400 = 1800.
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Integration by Parts: definite integral
Let f (x) = u(x) · v(x). We know

u(x)v′(x) = f ′(x)− u′(x)v(x)∫ b

a
u(x)v′(x)dx =

∫ b

a
f ′(x)dx −

∫ b

a
u′(x)v(x)dx∫ b

a
u(x)v′(x)dx = (f (b)− f (a))−

∫ b

a
u′(x)v(x)dx

∫ b

a
u(x)v′(x)dx = u(x) · v(x)

∣∣∣x=b

x=a
−
∫ b

a
u′(x)v(x)dx
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Example
Use integration by parts to evaluate

∫ 1
0 xexdx.

Note that xex = u(x) · v′(x), where

u(x) = x, v(x) = ex.

and u′(x) = 1.

∫ 1

0
x︸︷︷︸

u(x)

· ex︸︷︷︸
v′(x)

dx = x︸︷︷︸
u(x)

· ex︸︷︷︸
v(x)

∣∣∣x=1

x=0
−
∫ 1

0
1︸︷︷︸

u′(x)

· ex︸︷︷︸
v(x)

dx

=(1 · e1 − 0 · e0)− (e1 − e0) = 1
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Integration by Substitution
Let g(x) = F (φ(x)). By chain rule we have

g ′(x) = f (φ(x))φ′(x)

By definition, we have∫ b

a
f (φ(x))φ′(x)dx =F (φ(b))− F (φ(a))

=

∫ φ(b)

φ(a)
f (x)dx
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Example
Use integration by substitution to evaluate

∫ 2
0 2xex2

dx.

Write 2xex2
= ex2 · (2x) = f (φ(x)) · φ′(x) with

φ(x) = x2, f (x) = ex.

A primitive of f (x) = ex is F (x) = ex .

∫ 2

0
2xex2

dx =

∫ φ(2)

φ(0)
f (x)dx

=

∫ 4

0
exdx = ex

∣∣∣x=4

x=0
= e4 − 1.
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Function as an unknown argument

We know y = F (x), but the analytical form of F is
unknown.

the derivative of F (x) is f (x), which is known.

The primitive function of f (x) is the solution of the following
equation:

F ′(x) = f (x),or often written as
dy
dx

= f (x)

where y = F (x).

The unknown is a function, not a variable

It involves the function F (x) and its derivative

Such an equation is called differential equation

27 / 35



First-order linear differential equation
A first-order linear differential equation in F (x) is

F ′(x) = a(x) · F (x) + b(x)

where a(x) and b(x) are known functions.
Let y = F (x), we may write the equation in y as

dy
dx

= a(x) · y + b(x).

When a(x) ≡ 0: the solution set is
∫

b(x)dx

A Special Case
Let a(x) = k for all x and b(x) = 0.

dy
dx

= ky, k is a known constant

Can we solve y? and how can we solve it? 28 / 35



A Heuristic way: Textbook

WARNING: This procedure is NOT correct!

1) Divide y on both sides: 1
y dy = kdx

2) Integrate both sides: ln(|y|) + C1 = kx + C2

3) |y| = Ãekx with Ã = eC2−C1 > 0

4) y = Aekx with A ̸= 0

However, this helps us to guess the solution
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A correct way
1) Guess the solution: y = Aekx for some A

2) Plug Aekx into the equation dy
dx = ky:

LHS=Aekx · k = Akekx ,
RHS=k · Aekx=LHS

So A can be any real number (including 0).

3) We can prove that these are the only possible solution
(homework).
Hint: We may assume the solution to be y = λ(x) · ekx , and
show that λ′(x) ≡ 0. Thus λ(x) can only be a constant.

General solution
y = Aekx , where A is an arbitrary constant.
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General linear differential equations

A general first-order linear differential equation is

dy
dx

= ky + b, where k and b are known constants

The equation is homogeneous if b = 0; otherwise it is
inhomogeneous or heterogeneous.

The general solution of a heterogeneous differential
equation can be obtained based on the general solution
of the corresponding homogeneous equation (Section
12.3 of [MP]).
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General solution
The general solution to dy

dx = ky + b is

y = A · ekx − b
k
,

with A being a constant to be determined by an initial
condition, for k ̸= 0.
When k = 0, the general first-order linear differential equation
becomes

dy
dx

= b, where b is a known constant

Its solution is y = bx + c with c to be determined by an initial
condition.
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Initial condition
Initial condition: If we know y(x0) = y0 for some known
(x0, y0), we can plug in (x0, y0) to solve A (and c in the case
of k = 0).

For more complex equations, in general, we do not always
know (how to guess) the solutions.
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Example
We know the function y = y(x) satisfies the differential
equation

dy
dx

= 5y

and y(0) = 3. Determine the function y.

The solution of the differential equation is

y = Ae5x for any constant A ∈ (−∞,∞)

Then 3 = y(0) = A · e5·0 = A. Hence,

y = 3e5x.

34 / 35



Another example
A model for the population y(t), in millions, of a country at
time t shows that the rate of change of the population is given
by

dy
dt

= −0.05y + 4.5

The population at time t = 0 is 100 million. Solve the function
y(t).
The general solution is

y(t) = A · e−0.05t − 4.5
−0.05

.

Thus, we have y(t) = A · e−0.05t + 90.
Plugging in the initial condition y(0) = 100, we obtain that
A = 10. Thus y(t) = 10 · e−0.05t + 90.
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