# ETF2700/ETF5970 Mathematics for Business

Lecture 8

## Monash Business School, Monash University, Australia

# Outline

### Weeks 4-7:

- Derivative: Single variable
- Partial derivative: multiple variables
- Optimisation: stationary points
- Optimisation with constraint: Lagrange method

This week:

- Indefinite and definite Integration
- Differential Equation

## Integration as anti-differentiation

- Differentiation of F(x) gives its derivative F'(x), which is also a function of x.
- We can treat *F*′(*x*) as giving the slope of the tangent line at the point *x* on the graph of *y* = *F*(*x*).
- For a given function f(x), integration is to find a function F(x), such that F'(x) = f(x).
- As the derivative of any constant is zero, we can only determine *F*(*x*) up to an additive constant.
- Integration as taking anti-derivative of f(x) is  $\int f(x) dx$

## Integration as anti-derivative

The outcome of integration is not just one function, but a group of functions, all having the same derivative f(x). As such it is called an indefinite integral of f(x).

• To integrate f(x) = x w.r.t. x, we know that  $(x^2)' = 2x$ . So,  $(\frac{1}{2}x^2)' = x$ . This integration is written as  $\int x dx = \frac{1}{2}x^2 + c$ .

How to solve an indefinite integral As the derivative of  $x^n$  is  $nx^{n-1}$ , therefore,

$$\left(n^{-1}x^n\right)' = x^{n-1}$$

Thus, for integer  $n \neq -1$ , we have

$$\int x^{n-1} dx = n^{-1} x^n + C$$
$$\int x^n dx = (n+1)^{-1} x^{n+1} + C$$

How to integrate  $x^{-1}$ ? Note that  $(\ln x)' = x^{-1}$ , thus  $\int x^{-1} dx = \ln x + C$ , for x > 0.

### **Primitive function**

In general, we can write the integral of f(x) as

$$\int f(x)dx = F(x) + C$$

F(x) is called the primitive function of f(x).

Sometimes we know the primitive function of *f*(*x*) exists, but we don't know its analytical form. For example,

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-0.5x^2}$$

Its primitive function exists, but its analytical form is unknown

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣

## Indefinite integral: Examples

| f(x)                   | $F(\mathbf{x})$      | $\int f(x)dx$            |
|------------------------|----------------------|--------------------------|
| k (constant)           | kx                   | kx + C                   |
| x                      | $\frac{1}{2}x^2$     | $\frac{1}{2}x^2 + C$     |
| $x^n$ ( $n  eq -1$ )   | $(n+1)^{-1}x^{n+1}$  | $(n+1)^{-1}x^{n+1} + C$  |
| $e^x$                  | $e^x$                | $e^x + C$                |
| $a^x$ ( $a \neq 1$ )   | $\frac{a^x}{\ln(a)}$ | $\frac{a^x}{\ln(a)} + C$ |
| $x^{-1}$ ( $x > 0$ )   | $\ln(x)$             | $\ln(x) + C$             |
| $x^{-1}$ ( $x  eq 0$ ) | $\ln( x )$           | $\ln( x ) + C$           |
| $\sin(x)$              | $-\cos(x)$           | $-\cos(x) + C$           |
| $\cos(x)$              | $\sin(x)$            | $\sin(x) + C$            |

• We can verify that for each f(x) given above, F'(x) = f(x)

- In general, it is difficult to find F(x).
- Sometimes it is impossible to derive an analytical form of *F*(*x*).

Sum rule: Indefinite integral If  $F'_1(x) = f_1(x)$  and  $F'_2(x) = f_2(x)$ , then

$$\int (f_1(x) + f_2(x)) dx = \int f_1(x) dx + \int f_2(x) dx = F_1(x) + F_2(x) + C$$

We can prove it by the sum rule of derivatives:

 $F_1(x) + F_2(x)$  is a primitive of  $f_1(x) + f_2(x)$ 

Subtraction rule: Indefinite integral

$$\int (f_1(x) - f_2(x)) dx = \int f_1(x) dx - \int f_2(x) dx = F_1(x) - F_2(x) + C$$

with  $F'_1(x) = f_1(x)$  and  $F'_2(x) = f_2(x)$ We can prove by subtraction rule of derivatives:

 $F_1(x) - F_2(x)$  is a primitive of  $f_1(x) - f_2(x)$ 

### Product with constant For any constant $K \in (-\infty, \infty)$ , we have

$$\int K \cdot f(x) dx = K \cdot \int f(x) dx = K \cdot F(x) + C,$$

We can prove it by the product rule for differentiation  $K \cdot F(x)$  is a primitive of  $K \cdot f(x)$ For any F(x) such that F'(x) = f(x) we have

For any F(x) such that F'(x) = f(x), we have

$$\int f(x)dx = F(x) + C$$

| Differentiation         |                   | Integration             |
|-------------------------|-------------------|-------------------------|
| Sum Rule                | $\Leftrightarrow$ | Sum Rule                |
| Subtraction Rule        | $\Leftrightarrow$ | Subtraction Rule        |
| Product Rule (Constant) | $\Leftrightarrow$ | Product Rule (Constant) |
| Product Rule (General)  | $\Leftrightarrow$ | ?                       |
| Chain Rule              | $\Leftrightarrow$ | ?                       |

## Integration by parts

| Differentiation         |                   | Integration             |
|-------------------------|-------------------|-------------------------|
| Sum Rule                | $\Leftrightarrow$ | Sum Rule                |
| Subtraction Rule        | $\Leftrightarrow$ | Subtraction Rule        |
| Product Rule (Constant) | $\Leftrightarrow$ | Product Rule (Constant) |
| Product Rule (General)  | $\Leftrightarrow$ | Integration by Parts    |
| Chain Rule              | $\Leftrightarrow$ | ?                       |

Let  $f(x) = u(x) \cdot v(x)$ . By the product rule, we have

$$f'(x) = u'(x)v(x) + u(x)v'(x)$$

and therefore

$$u(x)v'(x) = f'(x) - u'(x)v(x) = f'(x) - g'(x)$$
$$\int u(x)v'(x)dx = f(x) - g(x) + C = f(x) - (g(x) + \widetilde{C})$$

where *C* and  $\tilde{C} = -C$  are arbitrary constants.

$$\int u(x)v'(x)dx = u(x) \cdot v(x) - \int u'(x)v(x)dx$$

#### Example

Use integration by parts to evaluate  $\int xe^x dx$ . Note that  $xe^x = u(x) \cdot v'(x)$ , where

$$u(x) = x$$
,  $v(x) = e^x$ .

and u'(x) = 1.



where  $C = -\widetilde{C}$  is an arbitrary constant.

## Integration by Substitution

| Differentiation         | Integration                 |
|-------------------------|-----------------------------|
| Sum Rule                | Sum Rule                    |
| Subtraction Rule        | Subtraction Rule            |
| Product Rule (Constant) | Product Rule (Constant)     |
| Product Rule (General)  | Integration by Parts        |
| Chain Rule              | Integration by Substitution |

Let  $g(x) = F(\varphi(x))$ . By the chain rule we have

 $g'(x) = f(\varphi(x))\varphi'(x)$ 

By definition, we have

$$\int f(\varphi(x))\varphi'(x)dx = g(x) + C = F(\varphi(x)) + C$$

してい 山田 ・山田・山田・山口・

Integration by Substitution

$$\int f(\varphi(x))\varphi'(x)dx = F(\varphi(x)) + C$$

• dx = infinitely small changes in x

■ 
$$d\varphi(x)$$
 = resulting infinitely small changes in  $\varphi(x)$   
■  $\varphi'(x) = \frac{d\varphi(x)}{dx} \Rightarrow d\varphi(x) = \varphi'(x)dx$   
■ Substitute  $d\varphi(x) = \varphi'(x)dx$   
 $\int f(\varphi(x))\varphi'(x)dx = \int f(\varphi(x))d\varphi(x)$   
■ Substitute  $z = \varphi(x)$   
 $\int f(z)dz = F(z) + C = F(\varphi(x)) + C$ 

#### Example

Use integration by substitution to evaluate  $\int 2xe^{x^2} dx$ . Write  $2xe^{x^2} = e^{x^2} \cdot (2x) = f(\varphi(x)) \cdot \varphi'(x)$  with

$$\varphi(x) = x^2, \quad f(x) = e^x.$$

A primitive of  $f(x) = e^x$  is  $F(x) = e^x$ .

$$\int 2xe^{x^2}dx = F(\varphi(x)) + C = e^{x^2} + C$$

where *C* is an arbitrary constant.

## **Definite Integrals**

- Let f(x) to be a continuous function on [a, b]
- F'(x) = f(x),  $x \in (a, b)$ : F(x) is the primitive function on (a, b)

The **definite integral** of f(x) over [a, b] is

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

- It does not depend on the choice of *F*
- Result is just a (real) number, not a function
- F(b) F(a) can be expressed as  $[F(x)]_a^b$  or  $F(x)\Big|_{x=a}^{x=b}$  or  $[F(x)]_{x=a}^{x=b}$

## Definite integral as an area



#### Definite integral as an area



Let  $\Delta t = \frac{b-a}{M}$ ,  $t_0 = a$ , and  $t_i = a + i \cdot \Delta t$ , for  $i = 1, \dots, M$ Blue Area  $\approx f(t_1) \cdot (t_1 - t_0) + f(t_2) \cdot (t_2 - t_1)$   $+ \dots + f(t_M) \cdot (t_M - t_{M-1})$   $= \sum_{a < t_i \le b} f(t_i) \cdot (t_i - t_{i-1})$  $\xrightarrow{\Delta t \downarrow 0 \quad (M \to \infty)} \int_a^b f(t) dt$  Definite Integral as summation





<□ ト < □ ト < □ ト < 臣 ト < 臣 ト < 臣 ト 臣 の Q () 17/35 Sum Rule

$$\int_{a}^{b} (f_{1}(t) + f_{2}(t))dt = \int_{a}^{b} f_{1}(t)dt + \int_{a}^{b} f_{2}(t)dt$$

## Subtraction rule

$$\int_{a}^{b} (f_{1}(t) - f_{2}(t)) dt = \int_{a}^{b} f_{1}(t) dt - \int_{a}^{b} f_{2}(t) dt$$

Multiplication by a constant

$$\int_{a}^{b} K \cdot f_{1}(t) dt = K \cdot \int_{a}^{b} f_{1}(t) dt, \quad K \in (-\infty, \infty)$$

18/35

(ロ) (部) (E) (E) (E)

### **Total Cost Function**

Consider a firm that produces *x* units of jackets.

- Its fixed cost is \$240
- Its variable cost for each unit is \$60
- Total cost (function) in dollars:

$$\underbrace{60 + \ldots + 60}_{x \text{ times}} + \underbrace{240}_{\text{Fixed Cost}} = 60x + 240$$

## Functional variable cost

- Assume the fixed cost is \$240
- Cost of one additional unit at production *x* is:

$$f(x) = 60 + x, \quad x = 0, 1, \dots$$

■ Let *F*(*x*) denote the total cost. At the production of *x* units, the cost of an additional unit is:

$$F(x+1) - F(x) = f(x) = 60 + x$$

### Our Example

Beginning with f(x) = x + 60 with a primitive  $G(x) = \frac{1}{2}x^2 + 60x$ , we have the total cost function as

$$F(x) = \underbrace{F(x) - F(0)}_{\text{Variable Cost}} + \underbrace{F(0)}_{\text{Fixed Cost}}$$
  
=  $\int_0^x f(t) dt + F(0)$   
=  $(G(x) - G(0)) + F(0)$   
=  $\left(\frac{1}{2}x^2 + 60x - 0\right) + 240$   
=  $\frac{1}{2}x^2 + 60x + 240$ 

(ロ) (部) (E) (E) (E)

## **Consumer Surplus**



## Calculate CS Recall $P_0 = 40$ , $Q_0 = 60$ and

$$P(Q) = 100 - Q$$

which has a primitive  $F(Q) = 100Q - \frac{1}{2}Q^2$ 

$$CS = \int_0^{Q_0} P(Q) dQ - P_0 \cdot Q_0$$
  
= (F(Q\_0) - F(0)) - P\_0 \cdot Q\_0  
= (F(60) - F(0)) - 40 \cdot 60  
= 4200 - 2400 = 1800.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Integration by Parts: definite integral Let  $f(x) = u(x) \cdot v(x)$ . We know

$$u(x)v'(x) = f'(x) - u'(x)v(x)$$
$$\int_{a}^{b} u(x)v'(x)dx = \int_{a}^{b} f'(x)dx - \int_{a}^{b} u'(x)v(x)dx$$
$$\int_{a}^{b} u(x)v'(x)dx = (f(b) - f(a)) - \int_{a}^{b} u'(x)v(x)dx$$

$$\int_a^b u(x)v'(x)dx = u(x)\cdot v(x)\Big|_{x=a}^{x=b} - \int_a^b u'(x)v(x)dx$$

### Example

Use integration by parts to evaluate  $\int_0^1 xe^x dx$ . Note that  $xe^x = u(x) \cdot v'(x)$ , where

$$u(x) = x, \quad v(x) = e^x.$$

and u'(x) = 1.

$$\int_{0}^{1} \underbrace{x}_{u(x)} \cdot \underbrace{e^{x}}_{v'(x)} dx = \underbrace{x}_{u(x)} \cdot \underbrace{e^{x}}_{v(x)} \Big|_{x=0}^{x=1} - \int_{0}^{1} \underbrace{1}_{u'(x)} \cdot \underbrace{e^{x}}_{v(x)} dx$$
$$= (1 \cdot e^{1} - 0 \cdot e^{0}) - (e^{1} - e^{0}) = 1$$

**Integration by Substitution** Let  $g(x) = F(\varphi(x))$ . By chain rule we have

$$g'(x) = f(\varphi(x))\varphi'(x)$$

By definition, we have

$$\int_{a}^{b} f(\varphi(x))\varphi'(x)dx = F(\varphi(b)) - F(\varphi(a))$$
$$= \int_{\varphi(a)}^{\varphi(b)} f(x)dx$$

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣

#### Example

Use integration by substitution to evaluate  $\int_0^2 2xe^{x^2} dx$ . Write  $2xe^{x^2} = e^{x^2} \cdot (2x) = f(\varphi(x)) \cdot \varphi'(x)$  with

$$\varphi(x)=x^2, \quad f(x)=e^x.$$

A primitive of  $f(x) = e^x$  is  $F(x) = e^x$ .

$$\int_0^2 2x e^{x^2} dx = \int_{\varphi(0)}^{\varphi(2)} f(x) dx$$
$$= \int_0^4 e^x dx = e^x \Big|_{x=0}^{x=4} = e^4 - 1.$$

・ロ・・母・・ヨ・・ヨ・ シック

Function as an unknown argument

- We know y = F(x), but the analytical form of *F* is unknown.
- the derivative of F(x) is f(x), which is *known*.

The primitive function of f(x) is the solution of the following equation:

$$F'(x) = f(x)$$
, or often written as  $\frac{dy}{dx} = f(x)$ 

where y = F(x).

- The unknown is a **function**, not a variable
- It involves the function F(x) and its derivative
- Such an equation is called **differential equation**

# First-order linear differential equation

A first-order linear differential equation in F(x) is

$$F'(x) = a(x) \cdot F(x) + b(x)$$

where a(x) and b(x) are **known** functions. Let y = F(x), we may write the equation in *y* as

$$\frac{dy}{dx} = a(x) \cdot y + b(x).$$

• When  $a(x) \equiv 0$ : the solution set is  $\int b(x) dx$ 

## A Special Case Let a(x) = k for all x and b(x) = 0.

$$\frac{dy}{dx} = ky$$
, k is a known constant

Can we solve *y*? and how can we solve it?  $(a,b) \in a$ 

A Heuristic way: Textbook

#### WARNING: This procedure is NOT correct!

- 1) Divide *y* on both sides:  $\frac{1}{y}dy = kdx$
- Integrate both sides: ln(|y|) + C<sub>1</sub> = kx + C<sub>2</sub>
   |y| = Ãe<sup>kx</sup> with à = e<sup>C<sub>2</sub>-C<sub>1</sub></sup> > 0
   y = Ae<sup>kx</sup> with A ≠ 0

However, this helps us to guess the solution

### A correct way

- 1) Guess the solution:  $y = Ae^{kx}$  for some A
- 2) Plug  $Ae^{kx}$  into the equation  $\frac{dy}{dx} = ky$ :

LHS=
$$Ae^{kx} \cdot k = Ake^{kx}$$
,  
RHS= $k \cdot Ae^{kx}$ =LHS

So *A* can be any real number (including 0).

3) We can prove that these are the only possible solution (homework).
Hint: We may assume the solution to be y = λ(x) · e<sup>kx</sup>, and show that λ'(x) ≡ 0. Thus λ(x) can only be a constant.

### General solution

 $y = Ae^{kx}$ , where *A* is an arbitrary constant.

# General linear differential equations

A general first-order linear differential equation is

 $\frac{dy}{dx} = ky + b$ , where *k* and *b* are known constants

The equation is **homogeneous** if b = 0; otherwise it is **inhomogeneous** or **heterogeneous**.

 The general solution of a heterogeneous differential equation can be obtained based on the general solution of the corresponding homogeneous equation (Section 12.3 of [MP]). General solution The general solution to  $\frac{dy}{dx} = ky + b$  is

$$y = A \cdot e^{kx} - \frac{b}{k},$$

with *A* being a constant to be determined by an initial condition, for  $k \neq 0$ . When k = 0, the general first-order linear differential equation becomes

$$\frac{dy}{dx} = b$$
, where *b* is a known constant

Its solution is y = bx + c with c to be determined by an initial condition.

## Initial condition

- Initial condition: If we know y(x₀) = y₀ for some known (x₀, y₀), we can plug in (x₀, y₀) to solve A (and c in the case of k = 0).
- For more complex equations, in general, we do not always know (how to guess) the solutions.

### Example

We know the function y = y(x) satisfies the differential equation

$$\frac{dy}{dx} = 5y$$

and y(0) = 3. Determine the function *y*. The solution of the differential equation is

$$y = Ae^{5x}$$
 for any constant  $A \in (-\infty, \infty)$ 

Then  $3 = y(0) = A \cdot e^{5 \cdot 0} = A$ . Hence,

$$y = 3e^{5x}$$

## Another example

A model for the population y(t), in millions, of a country at time *t* shows that the rate of change of the population is given by

$$\frac{dy}{dt} = -0.05y + 4.5$$

The population at time t = 0 is 100 million. Solve the function y(t). The general solution is

The general solution is

$$y(t) = A \cdot e^{-0.05t} - \frac{4.5}{-0.05}.$$

Thus, we have  $y(t) = A \cdot e^{-0.05t} + 90$ . Plugging in the initial condition y(0) = 100, we obtain that A = 10. Thus  $y(t) = 10 \cdot e^{-0.05t} + 90$ .