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Abstract

Discrete network embedding aims to learn compact and low-dimensional dis-

crete representations for network (graph) nodes by preserving semantical and

structural information of networks. In practice, there are numerous domains

for network data, but expensive semantical labels may only be available for

some of them. This demands those embedding algorithms to be equipped

with transferability, i.e., unsupervisedly adapting to other domains. How-

ever, the prevailing conventional discrete network embedding methods force

on a single domain. This work bridges this gap by developing a transferable

discrete network embedding method. We focus on solving two problems:

knowledge transfer from a labeled domain to a new unlabeled domain and
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non-differentiable discretization in the discrete embedding. Specifically, for

the former, we propose a hierarchical knowledge distillation strategy to mit-

igate the knowledge gap between the domains. At the same time, for the

latter, we novelly treat the discretization as a classification problem instead

of the conventional regression problem. Finally, we conduct a wide range of

experiments to evaluate our method on a suite of tasks, including link pre-

diction, node classification, and neighbor recommendation. Our evaluation

results demonstrate that our model performs better than the conventional

discrete embedding methods over all the tasks.

Keywords: Discrete Network Embedding, Hierarchical Knowledge

Distillation, Transfer Learning, Differentiable Discretization

1. Introduction

Discrete network embedding tries to learn an encoding paradigm to em-

bed high-dimensional graphical nodes into low-dimensional, discriminative

and compact discrete codes. In this line of research, learning to hash [34, 28]

or quantisation [12] are the two mainstream approaches to effective data

compression since it enables efficient storage (in terms of space) and fast

retrieval (in terms of time) with the explosive increase in the amount of

available digital data. This work mainly targets the former, i.e., binarized

(hash) embeddings for networks. In practice, however, since the networks

are versatile from variant domains, e.g., paper citation networks from dif-

ferent periods [31], this poses a question: can we develop a discrete network
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embedding method with transferability for multiple domains? It is worth

noting that the research scope of this work lies in the conventional closed-set

domain adaptation [46, 35], which assumes that both the source and target

domains have the same label set, but the more challenging open-set domain

adaption [22, 19] is not the focus in this paper.

Recently, although discrete embedding techniques, e.g., hashing [25, 37],

have been widely investigated, they dominantly focus on single-domain net-

works. Those methods only work well on the source domain but would fail

on a target (new) dataset with a distributional shift from the source. In

other words, these methods do not adequately address the knowledge trans-

fer among the multiple domains. Moreover, the new domains are always

unlabeled, requiring the knowledge transfer to be conducted in an unsuper-

vised fashion.

A natural solution to mitigate the knowledge discrepancy is to finetune

the model learned on the source domain with the target domain. However,

the problem of finetuning lies in that retraining the model on new datasets

requires the availability of human annotations of the new domain, which is

expensive to obtain and thus may not be available. Therefore, this motivates

us to devise an unsupervised knowledge transfer mechanism to bridge the

distribution gap of multiple domains. To this end, the mainstream technique

is Generative Adversarial Networks (GANs) [36, 32]. In a nutshell, they

leverage a discriminator network to distinguish the source of embeddings.

When the discriminator cannot determine the origin of the embeddings, they
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believe the domain disparity has been suppressed to a relatively low level.

However, GAN cannot well handle the distribution of discrete embeddings,

as evidenced in [42]. To sidestep this issue, we borrow the idea of knowl-

edge distillation (KD) [30] that transfers the knowledge of a mature teacher

model to a student model and propose a hierarchical knowledge distillation

strategy to enhance the transferability of the embedding model by divid-

ing the transferred knowledge into three hierarchical levels from coarse to

fine. Specifically, we define the three types of transferred knowledge as 1)

prototype-based centroids that present the high-level semantics of each do-

main; 2) regional pointwise feature ensuring multi-domain features in the em-

bedding space are regionally aligned on top of the prototype-based centroids;

and 3) cross-domain prediction scores guaranteeing the aligned embeddings

with the same semantics, that is, the supervision on the source domain is

transferred to the new domain in a pointwise manner.

The other challenge in discrete network embedding is non-differentiable

nature of discretization functions [2], mainly caused by the widely-applied

and non-differentiable sign function. This problem has been mitigated by

replacing it with the differentiable and continuous tanh function or using the

alternative coordinate optimisation strategy [40]. However, those techniques

could produce undesirable relaxation errors [33], degrade learned discrete

codes’ quality, and hardly integrate the whole embedding network into an

end-to-end scheme. To address this issue, we treat the binarized procedure

as a classification problem instead of the conventional regression problem [28].
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Concretely, we deploy a linear classifier for each dimension of a discrete em-

bedding based on the Gumbel softmax function [4]. We do not involve any

discretized function, such as sign or tanh, eventually avoiding any relaxation

error produced.

In summary, we propose a transferable and differentiable discrete network

embedding (TD-DNE) method in this work for multi-domains. This is the

first discrete network embedding method with the transferability for multi-

domains to the best of our knowledge. Specifically, we develop a hierarchical

knowledge distillation strategy to transfer the multiple knowledge to the new

domains from coarse to fine in an unsupervised manner and novelly treat the

discretization function as a composition of multiple linear classifiers based on

the Gumbel-Softmax function to efficiently train the model without involving

relation errors during discretizing. Last, we evaluate our method on three

multi-domains datasets on the standard tasks of network embedding, such as

link prediction, node classification, node recommendation, and an ablation

study. All results demonstrate that our method can promisingly outperform

conventional discrete network embeddings focusing on a single domain.

A preliminary version of this paper has appeared at IJCAI 2019 [14]. The

preliminary version concentrated on the domain-adaptive hashing problem

for the image modality by generative adversarial networks (GANs). In this

manuscript, we have made the following major extensions:

1. We first propose a transferable discrete network embedding method for

multi-domain networks.
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2. We develop a hierarchical knowledge distillation to mitigate the knowl-

edge gap among multiple domains instead of the conventional GANs.

3. We leverage a reparameterization technique to design a differentiable

discretization function.

The rest of this paper is arranged as follows. Sec. 2 presents several highly

related works and our research backgrounds. The following Sec. 3 introduces

our proposed TD-DNE method accompanying our three main techniques.

Then, we conduct extensive experiments in Sec. 4, including visualization

examples. The conclusion is drawn in Sec. 5.

2. Related Work

We briefly survey relevant literature from three aspects: domain-adaptive

learning, discrete network embedding, and knowledge distillation.

2.1. Domain Adaptation Learning

The primary purpose of domain adaptation is to manipulate supervised

information on the source domain to guide model training on the target

domain without ground-truth labels. In the computer vision community,

domain adaptation has been applied in image segmentation [47] and image

retrieval [14]. Unlike traditional training datasets consisting of single-domain

data, domain-adaptive learning aims to train a unified model to handle mul-

tiple domains (e.g., digits and handwritten numbers). The main challenge
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of domain adaptation lies in the distributional discrepancy between differ-

ent domains, also named as domain shift in some other fields. To this end,

many unsupervised strategies has been proposed to diminish the domain dis-

tribution semantical mismatch. A fundamental idea is to supervisedly train

a classifier on the source domain and then finetune it on the new domain.

Hu et al. [16] developed an autoencoder-based duplex network to bridge the

distribution gap between the two domains by equipping two generator net-

works with the ability to reconstruct both domains’ data from their latent

space. A standard practice of dealing with adaptive learning is to project the

source and target domains into a common space and then reduce the domain

disparity [8] by a distribution alignment component or loss function.

2.2. Discrete Network Embedding

Network embedding [43] aims to map each node or edge in a network (e.g.,

heterogeneous network, homogeneous network, attributed network, etc.) into

a low-dimension vector and simultaneously preserve the network’s informa-

tion, including structure and semantics, as much as possible. However,

with the explosive growth of networks, the conventional continuous embed-

dings [11] require ample space or memory to store their embeddings. To

overcome this issue, a suit of researchers propose the other line of research,

i.e., discrete network embedding [40, 12]. Specifically, Yang et al. [40] first

proposed a binarized attributed network embedding model to encode net-

work structure and attributes by leveraging the Weisfeiler-Lehman proximity
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matrix. Nearly at the same time, Lian et al. [20] based on the matrix fac-

torization develop an information network hashing method to preserve the

high-order proximity, which can achieve almost comparable performance with

the corresponding continuous embedding. Wu et al. [37] first leverage the

random hash techniques to embed both content and structure information of

attributed networks. Unlike the previous discrete embeddings using binarized

codes to present networks, [13] propose a semisupervised quantisation-based

method for attribute networks to alleviate the performance degradation of

hashing codes.

2.3. Knowledge Distillation

Knowledge distillation (KD) [10] has been received extensive attention

from the research community, particularly in model compression [30]. With-

out loss of generality, a KD-based method always consists of two parallel

networks, a large teacher network that can be pretrained on massive data

or corpus in a supervised manner and a small student model jointly trained

by the teacher model with the unlabeled data. The main idea of KD is to

encourage the student model to mimic the teacher model so that the student

can achieve comparable performance with the teacher model. Based on the

distilled knowledge types, we could divide them into three main categories:

response-based knowledge [15], feature-based knowledge [18] and relation-

based knowledge [23]. A very close to our work is that Song et al. [29]

proposed to divide the distillation knowledge into different important levels
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and distill the knowledge in a in a coarse-to-fine manner. Fang et al. [7]

developed a data-free knowledge distillation via an adversarial training so

that the student model can be trained without access to real-world data. In

this work, we typically focus on the first two types: the response of the last

prediction layer and the representation of a middle layer of the teacher model

as the guided knowledge, respectively.

3. Methodology
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Figure 1: The overview of our TD-DNE, which consists of two parallel networks, a teacher
network trained on the labeled source domain and a student network trained on the target
domain without supervised signals. Note that the small circles in the embedding space
denote different nodes and we use different colors to distinguish their semantic labels.
Both networks mutually interact through our proposed hierarchical knowledge distillation.
Specifically, we propose three coarse-to-fine knowledge-specific transfer techniques, i.e.
prototype-based, regional feature based and cross-domain prediction score based, to enable
the supervised information in the source domain to guide the adaptive learning in the
target domain.

Figure 1 shows the overview framework of our proposed TD-DNE and all

used notations in this paper are defined in Table 1. Specifically, our model
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consists of a supervisedly trained teacher network and a parallel student

network. TD-DNE attempts to solve the two problems: transferring the rich

knowledge supervision knowledge to the novel domain and alleviating the

discretization errors. To this end, we develop two techniques, hierarchical

knowledge distillation and differentiable discretization embedding. Before

introducing them, we first elaborate the network structure preservation for

both domains.

Table 1: Notations.

Notations Definition

Ds Source domain data points
Dt Target domain data points
Encoderteacher Teacher network
Encoderstudent Student network
P+ Group of positive nodes
|P+| Number of positive nodes
zs Embedding vectors of source domain nodes
zt Embedding vectors of target domain nodes
b Discrete embedding vectors
ϕ Distance measurement function
yt′ Pseudo label of target nodes

3.1. Network Structure Preservation

Following a couple of network embedding techniques [46, 9, 1], we employ

multi-layer perceptron (MLP)-based deep neural network [20, 40, 25] as

our encoder network. Thus, the encoding process for both domains can be

10



formulated as:

hs
i = Encoderteacher(wih

s
i−1 + bi)

ht
i = Encoderstudent(wih

t
i−1 + bi)

(1)

where the Encoderteacher and Encoderstudent denotes the teacher model and

student network consisting of MLPs, respectively. Specifically, both of them

have three components: Dropout, LayerNorm and ReLU non-linearity; i

denotes the i-th layer of the multi-layer perceptron, and wi and bi represent

the i-th layer’s weight and bias parameters respectively. It is worth noting

that when i = 1, hs
0 (resp. ht

0) is initialized by the source (resp. target)

domain node features xs (resp. xt).

Then, we utilize the metric learning technique [48, 41] to equip embed-

dings with nodes’ neighborhood information. Specifically, we define two

types of nodes, the positive and negative, based on an anchor node. For-

mally, we consider the positive node group P+ only if they have a direct

connection, otherwise as a negative group P−. The objective function can

be formulated as:

J = max
j∈P+

i ,k∈P−
i

(0, λ+ ϕ(zi, zj)− ϕ(zi, zk)) (2)

where j denotes an arbitrary node sampled from the positive group P+
i of the

anchor node i while k denotes an arbitrary node sampled from the negative

group P−
i of the anchor node i; λ is a constant margin hyperparameter and

ϕ(·) is a function to measure the distance of two embeddings in the embedding
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space, for which we choose the Euclidean distance (L2 norm). However, as the

number of negative pairs are orders of magnitudes more than the number of

positive pairs, the model is prone to inclining heavily to the negative samples,

leading to poor preservation of network structure.

To address this issue, we modify it into a hard scheme [38] based on

positive and negative groups instead of pairs, i.e. our groupwise objective

function aims at minimizing the maximal distance in the positive group whilst

maximizing the minimal distance in the negative group. More concretely, the

positive group of node i is defined as all of its direct neighbors, denoted as

j ∈ P+
i , while the negative group of node i is those nodes not in the neighbors

of node i, i.e., j ∈ P−
i . Hence, we could rewrite Eq. (2) as the groupwise

contrastive loss as the below:

L1 =
1

N

N∑
i=1

max(0, λ+ max
j∈P+

i

ϕ(zi, zj)− min
k∈P−

i

ϕ(zi, zk)) (3)

Since |P+
i | is not too large, for a give anchor node i, we sample all its positive

neighbors as P+
i . On the other hand, due to the large size of |P−

i |, we

randomly sample about 10×|P+
i | negative pairs to construct P−

i each time.

3.2. Differentiable Discrete Embedding

As aforementioned, the main dilemma of discrete embedding lies in the

non-differentiable discretization function, e.g. sign [40, 39] that simply model

the discretization processing as a regression relaxation problem, that is forc-

ing continuous embeddings to be close to their corresponding discrete embed-
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dings. Inevitably, those methods could involve the quantization errors [33],

i.e. |sign(z)− z|, where z denotes the continuous embeddings. This feature

from sign(.) could degrade the performance learned discrete embeddings.

To solve this issue, we inspired by the reparameterization trick [17, 26]

view the discretization as a 0-1 classification problem. Specifically, we deploy

l linear classifiers W ∈ Rl×m×k after the embeddings z ∈ Rn×d, where n is

the number of nodes and d is the dimension of the embedding space, and

l×m is equal to d. Note that k is set to 2 since there are only two options, 0

or 1, for each dimension. Then, we divide z into l components each of which

is m-dimensional, i.e. z = [z1, z2, . . . ,zl] where zi ∈ Rn×m. Formally, the

classification processing is calculated by:

u = [z1W 1; z2W 2; . . . ; zlW l] (4)

where [; ] is the concatenation operation, and u ∈ Rn×l×k is the prediction

logits. Sequentially, we leverage the Gumbel-Softmax [4], which has gained

great success in selecting categorical variables great, as the active function

for the logits to generate prediction scores by:

s=

[
g−softmx(

u1+g1

τ
), g−softmx(

u2+g2

τ
), . . . , g−softmx(

ul+gl

τ
)

]
(5)

where gi ∈ R1×k is sampled from a Gumbel Distribution [17], i.e. gi =

log(−log(U(0, 1)) where U is a uniform distribution and τ ∈ (0,∞) is a

temperature parameter to adjust the approximation [4]. It is worth noting
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that we omit the first dimension of u for ease of illustration, that is u ∈ Rl×k.

Additionally, the active function g-softmx is calculated by:

g − softmx(
ui + gi

τ
) =

exp ((uij + gj) /τ)∑k
j=1 exp ((uij + gj) /τ)

(6)

After obtaining the prediction scores, we use argmax(·) to select the

discrete codes, i.e. bi = [argmax(s1); argmax(s2); . . . ; argmax(sl)], where

si ∈ Rk and bi ∈ {0, 1}l. To inject the supervision of the source domain, fol-

lowing the widely used pairwise constraint [14, 33], we employ the supervised

pairwise loss to optimize b:

L2 =
1

2

∑
yij∈Y

(
1

l
s̃⊤i s̃j − yij

)2

(7)

where s̃i ∈ Rl is the prediction score on the corresponding hash codes, that

is s̃ = [max(s1);max(s2); . . . ; max(sl)], and Y ∈ {−1, 1} is the similarity

matrix constructed from ground-truth labels of the source domain, that is,

if two nodes have at least one same label, their similarity is defined as 1 and

otherwise −1. Since Eq. (7) is differentiable, we can directly use gradient

descent strategies to optimize the whole model.

3.3. Hierarchical Knowledge Distillation

Our ultimate goal is to transfer the supervision to the target domains,

since labels are only available for the source domain network but not for new

domains. To this end, we propose three coarse-to-fine knowledge distillation
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components to hierarchically transfer the supervisedly learned knowledge

from the source domain to the unlabeled target domain. Concretely,

we focus on the following three types of knowledge: 1) prototype-based 2)

regional feature-based and 3) cross-domain prediction score based.

Prototype-based Knowledge: The high-level prototype-based knowledge

[27] is defined as the semantic centroids of a distribution. This knowledge

tries to align the two domains’ centers of the same class and guarantee the

target domain’s pivot centroids are consistent with the supervised semantics

on the source domain. This can be viewed as a coarse alignment for two

domains. As can be seen in Figure 1, we show three categories differentiating

with three colors. When two domains’ clusters (i.e., the star marks in both

domains) are aligned, we could see their overall data distributions are also

coarsely similar. In practice, we first use K-means clustering algorithm to

calculate the centroids and leverage MSE loss to optimize their distance as:

L3 =
K∑
i=1

MSE(
1

mi

∑
ys=i

zs,
1

ni

∑
yt′=i

zt) (8)

where zs denotes an embedding of a source domain data point from the

teacher network, while the zt denotes an embedding of a target domain data

point from the strudent network; K is the number of classes and mi (resp. ni)

denotes the number of samples in the same cluster in the source (resp. target)

domain. yt
′
is the pseudo label for the new domain and we will elaborate it

latter.
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Noticeably, due to the large time cost when calculating K-means on all

samples, we do not precisely calculate the centers of all nodes in the training

stage, but instead calculate the centers of mini-batches to approximate the

global centers. It is worth noting that we usually set a large batch size to

make sure the K-means clustering covers all categories during training.

Regional Feature-based Knowledge : Although the above prototype

centroids ensure the two domains are globally aligned, the regional subspaces

of the two domains in the embedding space might inconsistently distribute.

For instance, as shown in Figure 1, even if the centroids of green points in

the two domains are aligned, their other points do not distribute consistently.

Hence, we further propose to impose restrictions on the alignment of both

domains’ regional features in a point-to-point manner. To this end, we feed

the target data points with high-confidence labels into the teacher network

and distill the pointwise feature knowledge from the teacher to the student

network. Then, we use the MSE to optimize their distance , i.e., distilling

the teacher model’s knowledge to the student. Following [3], we could write

our regional feature-based knowledge distillation as: L4 =
∑
i∈Dt

MSE(zt
i, z

s′
i ),

where zs′ denotes the embedding of target point i via the teacher network

and zt is the embedding of target point i via the student network. Compared

to Eq.(8), their difference is that we remove the clustering process and this

can be viewed as a global-to-regional knowledge alignment. Note that the

target points with confidence labels are calculated by Eq. (9). The reason for

that is we hope the features from the teacher network is relatively accurate
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so that it can guide the feature learning of the student network.

Cross-domain Prediction Scores based Knowledge: The above mod-

ules constrains two domains’ features are globally and regionally aligned, but

their final semantical labels might be various. To this end, we propose to

align the cross-domain prediction score to make sure the aligned pointwise

embeddings with the same distributional semantics.

In practice, we let both networks intersectedly predict both domains’

data. Specifically, the teacher model supervisedly classifies the source data

by L5 = − 1
Ns min

∑Ns

i=1 y
s
i log (ỹ

s
i ), where ỹs

i is the prediction probability of

the source domain point i from Ds and ys
i is the corresponding ground-truth

label.

For the unlabeled target domain, we use the teacher model to generate

highly precise pseudo labels for the target domain, and set a threshold T to

select the labels, as shown below:

yt′

i =

 argmax(ŷt
i) if ŷt

i > T

−1 otherwise
(9)

where yt′
i denotes the pseudo label of the target domain point i, and ŷt

i is

point i’s prediction probability from the teacher model. After that, we treat

the pseudo labels as the proxy ground-truth and train the student model in

a supervised way, i.e. L6 = − 1
Nt minyt′

i log (ỹ
t
i), where ỹt

i is the predicted

score by the student model. Then, we constrain yt
i and ỹt

i to have the close
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prediction score distribution by:

L7 =
1

N s
min

∑
i

KL
(
ŷt
i∥ỹt

i

)
(10)

where KL(·) denotes the Kullback-Leibler divergence to measure the discrep-

ancy between the two domains.

3.4. Learning

Overall there are three types of objective functions in our model: network

structure preservation in Sec. (3.1), discrete hash learning in Sec. (3.2) and

hierarchical knowledge transferring in Sec. (3.3). Formally, we could write

the overall objective function as:

L = L1 + αL2 + βL3∼7 (11)

where α and β are the two hyper-parameters to balance the terms. It is

worth noting that for the three hierarchical knowledge we equally set their

weights as 1. In the latter parameters analysis, we test the impacts of the

hyper-parameters on the learned discrete embeddings.

4. Experiments

In this section we will evaluate our TD-DNE against some state-of-the-

art models on networks. We begin by describing the benchmark datasets,

baseline models and implementation details.
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4.1. Datasets

Following UDA [35], we conduct our experiments on three citation net-

works obtained from ArnetMiner [31]. Brief statistics of the three networks

are shown in Table 2. We sample three subsets from three large citation net-

works: DBLPv4 (D), ACMv8 (A) and Citationv1 (C). To reduce the overlap

between different datasets, we extract published papers from different peri-

ods for these three datasets following UDA [35]. Papers are classified into

eight categories: Engineering, Electronic, Software Engineering, Mathemat-

ics, Theory, Applied, Artificial Intelligence , and Computer Science. For the

attributes, we extract the word frequency of each paper’s abstract, which is

represented as an 8, 328-dimensional vector.

Table 2: Brief statistics of the three datasets.

G DBLPv4 ACMv8 Citationv1

|V | 6,209 8,173 4,350
|E| 8,056 22,753 8,513
Attr. 8,328 8,328 8,328
Labels 8 8 8

4.2. Baselines

We choose the following state-of-the-arts discrete hash methods for net-

work embeddings as our baselines.

• SH [6] is a classical and widely-applied hash method for the approxi-

mate nearest neighbor search task.
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• Discrete Collaborative Filtering (DCF) [44] is a principled hashing

method able to tackle the challenging discrete optimization problem

in hash learning and avoid large quantisation errors caused by two-step

optimization.

• DNE [25] is the first work of discrete representation learning for single

domain networks by preserving Hamming similarity.

• NetHash [37] utilises randomized hashing techniques to generate dis-

crete hash codes by treating a network as a tree-like graph.

• Binarized Attributed Network Embedding (BANE) [40] develops a We-

isfeiler-Lehman proximity matrix to preserve the dependence between

node attributes and connections via combining the features from neigh-

boring nodes.

• Information Network Hashing (INH) [20] is an embedding compression

method based on matrix factorization and able to preserve high-order

proximity into binary codes.

• Discrete Embedding for Latent Networks (DELN) [39] is an end-to-end

discrete network embedding method to learn binary representations.

4.3. Implementation Details

The feature encoder network consists of three MLP modules and the last

layer outputs 256-dimensional embeddings. It is worth noting that a wide
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range of network embedding methods [5, 35, 45] use graph neural network

(GNN) as the encoder network, and have demonstrated that the GNN-based

encoder is superior to MLP. However, in this work, to fairly compared with

the other domain-adaptive network embedding methods [20, 40, 39, 25] using

MLP as their encoder network, we also employ the MLP as our backbone

network to learn the embeddings. The detailed configuration of our teacher

network is shown in Table 3 and the student network has the same configu-

ration.

The detailed configuration of our teacher network is shown in Table 3

and the student network has the same configuration. The batch size is

set to 400, ensuring the effectiveness of the K-means algorithm. For a fair

comparison with baseline methods, all methods’ hash code length is set to

128. The margin λ for groupwise contrastive loss is set to 5. The temperature

τ in Equation (6) is set to 1 as [4]. The learning rate is set to 0.005 and

the threshold T for the pseudo label selection is set to 0.85. The hyper-

parameters of α and β are set to 0.1 and 0.7 by a grid search [21] from the

range [0.1, 1.0] and [0.1, 1.0], respectively. The search step is set 0.1.

For the evaluation on the node classification task, we first generate all

nodes’ embeddings and then train a one-vs-rest logistic regression classifier

to classify the embeddings, where all methods use the same-dimensional hash

codes for training and testing. We measure the mean score of Micro F1

and Macro F1 metrics to evaluate the performance of node classification,

following DANE [46], and use the area under curve (AUC) score to evaluate
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Layer Size of Filter Operations

MLP1 8,328 × 1,024 Dropout, LayerNorm, ReLu
MLP2 1,024 × 512 Dropout, LayerNorm, ReLu
MLP3 512 × 256 Dropout, LayerNorm, ReLu
W 128 ×2 × 1 g-softmx
MLP4 128 × 256 Dropout, LayerNorm, ReLu
MLP5 256 × 512 Dropout, LayerNorm, ReLu
MLP6 512 × 8 Dropout, Softmax

Table 3: Configuration details of our teacher network.

the performance of link predication, following Graph2Gauss [1]. For link

prediction, we randomly select 5% and 10% edges as the validation and test

set respectively, following Graph2Gauss [1]. All experiments were performed

on a workstation with 256 GB memory, 32 Intel(R) Xeon(R) CPUs (E5-2620

v4 @ 2.10GHz) and 8 GeForce GTX 1080Ti GPUs.

4.4. Cross-domain Node Classification Results

Table 4 shows the node classification results (of discrete embeddings) com-

pared with the state-of-the-art discrete network embedding methods. For a

fair comparison, since SH cannot learn representations for networks, we use

the feature learned from TD-DNE to train SH, i.e., the latent embeddings

z, while the other models use nodes’ attributes to train. From Table 4, it

can be observed that our method TD-DNE achieves the best performance

over all but one domain-transfer tasks, except for C→A with DELN being

0.33 percentage points higher than ours. On average, TD-DNE is superior to

the baseline methods, surpassing the second best method DELN by 2.42 per-
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Table 4: Node classification results on six cross-domain tasks compared with the state-
of-the-art discrete embedding methods in terms of the mean of Micro-F1 and Macro-F1
score (%).

Methods A→D A→C C→D C→A D→A D→C Average

SH 21.25 16.51 20.37 17.52 19.68 19.34 19.13
DCF 20.47 18.13 21.52 19.11 20.24 23.06 20.42
DNE 23.51 24.81 22.38 21.91 22.40 25.06 23.35
NetHash 23.83 19.38 24.15 23.05 23.52 24.28 23.06
BANE 25.72 22.15 20.63 22.40 23.08 20.75 22.46
DELN 25.06 26.83 28.59 27.12 26.13 25.23 26.48
INH 21.40 25.14 24.36 25.60 24.41 25.40 24.55
TD-DNE 25.41 29.82 31.37 26.79 29.25 30.14 28.90

centage points. We consider that the main reason is the compared methods

can only work well on single domains, but perform poorly on new domains

with relatively large distribution disparity. For example, the majority of

discrete embedding methods, including DNE, INH and DELN, leverage a

matrix factorization technique to learn the binary codes. They decompose

the input attribute matrix into hash codes under the constraint of recon-

structing the original attribute matrix. Their common issue lies in the fact

that the target network has a large different attributes distribution from the

source network, which results in large reconstruction errors by the matrix

decomposition operation, and finally leading to poor results on the domain

transfer. In contrast, TD-DNE explores hierarchical knowledge distillation

techniques to mitigate the problem of attribute distribution shift by aligning

their embedding space and prediction scores. In the ablation study described

later, we will further discuss how effective those techniques are.
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Table 5: Link prediction results on six cross-domain tasks compared with the state-of-the-
art discrete embedding methods in terms of the mean of AUC score (%).

Methods A→D A→C C→D C→A D→A D→C Avg.

SH 65.24 67.51 64.37 61.82 62.43 65.29 64.44
DCF 68.47 66.38 65.12 63.22 67.59 64.18 65.83
NetHash 71.64 69.73 68.51 64.14 68.65 67.74 68.40
DNE 65.81 70.34 69.15 70.35 71.19 68.31 69.19
BANE 66.37 71.62 65.79 69.42 66.36 66.67 67.71
DELN 70.29 68.41 65.82 67.31 66.81 68.03 67.78
INH 74.51 76.14 70.38 69.60 72.43 72.40 72.31
TD-DNE 77.02 78.52 74.27 71.79 75.37 74.36 75.17

It is worth noting that SH gains comparable results with DCF and does

not show catastrophic performance degradation as we originally anticipated,

possibly because SH is trained by our learned continuous representations,

which, to some extent, confirms that our network embedding strategy can

learn high-quality embeddings for multiple domains.

4.5. Link Prediction Results

Link prediction evaluates the learned codes’ ability to reconstruct the

original network’s neighbor structure. Following Graph2Gauss [1], the val-

idation/test set consists of 5%/10% of edges randomly sampled from the

network respectively, and we randomly select edges and an equal number

of non-edges from the test set. Table 5 shows the link prediction results of

discrete embeddings on the six cross-domain tasks.

From the results we can observe that our TD-DNE method exceeds other

single-domain discrete embedding methods over all domain transfer tasks.
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In particular, TD-DNE is 2.86 points better than the second best method

INH. Since INH places emphasis to preserving high-order proximity, it shows

superiority to other matrix factorization based models such as DNE. It is

worth noting that DELN achieves poor performance in this task, although it

obtains competitive results in node classification.

In summary, although single-domain embedding methods can handle uni-

tary networks, they consistently show performance decreases when evaluated

in a domain-adaptive setting, in which our method achieves a substantial

performance advantage due to techniques specifically designed to tackle this

problem.

4.6. Node Recommendation

Node recommendation is a widely employed task to evaluate retrieval per-

formance for social and commercial networks, for which discrete embeddings

can save much time [20]. Given a query code, node recommendation aims to

returning a list of nodes, ranked by their structural similarity. Following the

settings [20], we sample 90% neighbors of each node to train the model while

the remaining 10% neighbors are reserved for evaluation, and use NDCG@50

as the evaluation metric.

Table 6 presents the performance of node recommendation on six cross-

domain tasks. From the table, we could observe that TD-DNE outperforms

all the baseline methods in terms of the average performance, outperforming

the second best method INH by approx. 2 points. INH in turn outperforms
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Table 6: Node recommendation results on six cross-domain tasks compared with the state-
of-the-art discrete embedding methods in terms of NDCG@50 (%).

Methods A→D A→C C→D C→A D→A D→C Avg.

SH 9.64 12.74 14.04 13.16 10.72 9.12 11.57
DCF 11.61 14.93 17.38 15.47 13.58 10.36 13.89
NetHash 14.29 13.07 16.62 14.70 12.93 12.03 13.94
DNE 13.84 15.39 18.85 14.52 14.02 14.28 15.15
BANE 19.30 16.83 19.40 18.31 15.19 17.95 17.83
INH 20.51 22.34 26.31 21.38 18.30 20.76 21.60
DELN 19.73 20.15 24.25 20.17 17.84 19.31 20.24
TD-DNE 23.12 24.53 28.10 24.28 21.15 20.23 23.56

the third best DELN by 1.26 points. Although both of them are based

on matrix factorization, INH’s advantage comes from its capability to learn

high-order proximity. Noticeably, even if TD-DNE only explores the first-

order neighborhood structure preservation, our other techniques aiming to

reduce the domain discrepancy play an important role in network structure

and semantics preservation. In contrast, the other methods, such as DCF,

NetHash and DNRE, perform much more poorly in this task because of

missing the transferability for cross-domain tasks.

4.7. Ablation Study

In this section, we study the effectiveness of each component in TD-DNE.

Specifically, we first examine three main techniques: groupwise contrastive

loss, Gumbel-softmax based discretization, hierarchical knowledge distilla-

tion. Besides, we also test another mainstream encoder network, i.e., graph

neural network [24], which has been demonstrated to be effective in learning
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representations for structural data. Thus, we ablate TD-DNE into four

variants:

• −L1 uses a pointwise contrastive loss Eq.(2) instead of our groupwise

constraint Eq.(3).

• −L2 uses the regression strategy instead of the Gumbel-Sofmax strat-

egy based discretization in Sec. 3.2.

• −Lhkd discards hierarchical knowledge distillation described in Sec. 3.3.

• TD-DNEgnn denotes that we replace MLP-based encoders in Eq.(1)

with GNN.

We thoroughly conduct experiments on node classification and link predic-

tion, as shown in Tables 7 and 8, respectively. It is worth noting that all

variants are under the same experimental configurations expect for their cor-

responding ablated module(s). From the two tables, we could make the

following observations:

(1) From the comparison of −L1 and TD-DNE, a moderate decrease can

be seen in the variant of −L1, which confirms that our groupwise contrastive

loss is more effective than the pairwise version. We think the main reason

is that Eq. (2) is prone to falling into sub-optimality, because Eq. (2) can

only select |P+
i | negative samples each time, but due to the large scale of

|P−
i |, we hardly guarantee that all anchor nodes’ positive pairs have smaller

distances than its negative ones. By contrast, in Eq. (3), more negative
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Table 7: The impact of each component on the task of node classification (%).

Methods A→D A→C C→D C→A D→A D→C Avg.

−L1 23.91 27.49 29.03 25.17 28.11 29.84 27.24
−L2 22.53 25.20 27.42 26.20 27.26 28.01 26.10
−Lhkd 22.28 25.48 26.37 22.09 24.12 26.12 24.41

Lhkd−p 23.03 27.83 29.25 24.72 26.47 28.52 26.57
Lhkd−r 24.22 28.90 30.41 26.03 28.31 29.54 27.90
Lhkd−c 23.85 28.12 29.70 25.39 27.83 29.06 27.32

TD-DNEgnn 25.85 30.27 32.24 26.63 29.74 31.35 29.27
TD-DNE 25.41 29.82 31.37 26.79 29.25 30.14 28.90

Table 8: The impact of each component on the task of link prediction (%).

Methods A→D A→C C→D C→A D→A D→C Avg.

−L1 74.34 76.11 70.51 67.25 71.30 72.04 71.95
−L2 76.82 78.03 73.25 70.10 74.24 74.18 74.43
−Lhkd 75.11 77.50 73.03 71.20 74.62 73.25 74.12
TD-DNEgnn 77.81 79.58 74.91 72.14 75.43 75.20 75.68
TD-DNE 77.02 78.52 74.27 71.79 75.37 74.36 75.17

pairs are considered during the distance calculation, i.e., we only select the

negative points with the largest distance to optimize the contrastive loss.

This benefits the model to find the optimal solution. Besides, we could

observe that the groupwise contrastive loss plays a more important role in

the link prediction than in node classification, because L1 is to preserve

network structure instead of semantics.

(2) Comparing −L2 with TD-DNE, we could notice that the Gumbel-

Softmax reparameterization trick brings about 2 and 1 points lift on node

classification and link prediction, respectively. We conjecture the reason is
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that we directly treat the generation of discrete codes as a classification prob-

lem, and intrinsically avoid the quantization errors of the linear regression.

(3) When removing the hierarchical knowledge distillation strategy, it is

noticeable that the node classification suffers a large performance degrada-

tion, on average with more than 4 points. This confirms that knowledge

distillation is essential for the semantical knowledge transferring. On the

other hand, the knowledge distillation does not show much effectiveness on

the task of link prediction, possibly because our distillation only focuses

on the semantical knowledge but not the network structure. To further

study impacts of the three types of knowledge in the distillation on the task

of node classification, we conduct the other ablation experiments, i.e., re-

moving each knowledge type in turn, and the bottom block in the Table 7

shows the results, where Lhkd-p, Lhkd-r and Lhkd-c denote the model removes

the prototype-based semantic centroids, regional embedding distribution and

cross-domain prediction score, respectively. Generally, we could witness all of

the three knowledge types can positively contribute to the node classification,

especially the prototype centroids.

(4) For TD-DNEgnn, we also use a three layers GNN as our encode net-

work. From the results, we could see that when replacing our MLP-based

encoder with GNN, there is ∼ 1 point improvement on average on the task

of node classification. Similarly, the same situation can been found on the

link prediction. This further demonstrates that graph convolution network

is more effective than MLP in embedding structural data.
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4.8. Parameters Analysis

This section empirically studies the hyperparameters in our method: the

threshold T for the pseudo label selection, the training batch size for K-mean

in the prototype-based centroids and the weights for the three hierarchical

knowledge.
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Figure 2: Parameter sensitive analysis on the transfers of A → D and D → A. (a)
shows the results under different threshold T; (b) presents the results and time cost with
different batchsize values; and (c) shows shows impacts of three different weights for the
three hierarchical knowledge on node classification.

We particularly examine them on the two domain-transfer schemes: A →

D and D → A on the task of node classification and the results are shown

in Figure 2. From the Figure 2a, we could see that with the increase of

threshold T value, both results on the two settings gains a relative growth

when the threshold is less than 0.85. However, with further enlarging T

over it, we could observe a slight performance degrease. We deem the main

reason is that smaller T could incur lower-quality pseudo labels for the target

domain, degrading the effectiveness of prototype centroids and cross-domain

prediction scores, but a larger T could result in less number of pseudo labels
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and inefficient training on the student network.

In Figure 2b, we can find that larger batch size could benefit the node

classification because of the more accurate K-means clustering. However, the

model also needs more training time. To trade off both of them, we choose

400 as our training batch size.

Figure 3c shows impacts of three different weights for the three hierar-

chical knowledge on node classification. From the weights, we could see that

when setting a small weight for the prototype knowledge, the performance

of node classification suffers from the most significant degradation, com-

pared to the other two knowledge. To some extent, we could deem that the

pivot prototype-based knowledge plays the most import role in the knowl-

edge transferring. However, on the other hand, when we enlarge the weight

of prototype-based knowledge, i.e., the red curve in Figure 3c, we could find

the performance improves but then decreases. This is possibly because in-

creasing the weight of the prototype negatively influences the other two types

of knowledge. Regarding the regional features and prediction scores, both of

them suffers from less impacts from their weights, but both of them tend to

increase and then decrease, around the weight equal to 1. Therefore, based

on the above analysis, we equally set the weights of the three knowledge as

1.
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4.9. Embedding Space Visualization

We use t-SNE to reduce the embeddings to 2-dimensional vectors and ran-

domly sample 1, 000 points. Figure 3a, 3b and 3c visualizes the embeddings of

DELN, TD-DNE without hierarchical knowledge distillation and TD-DNE,

respectively. Note that the same color dots denote the same category. Gen-

erally, we can make the observation that nodes of the same labels tend to

cluster together in Figure 3c. However, the points in Figure 3a and 3b are

much more tightly tangled, especially removing the hierarchical knowledge

distillation strategy. This confirms that single-domain network embeddings

do not perform well in domain-adaptive settings and our distillation tech-

nique can transfer the supervised semantic information to the new unlabeled

domain.

(a) DELN (b) TD-DNE without hierarchi-
cal knowledge distillation

(c) TD-DNE

Figure 3: A visualization of target domain’s embeddings learned from D→A.
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5. Conclusion

In this paper, we focus on the discrete network embedding and pro-

pose a transferable and differentiable discrete network embedding (TD-DNE)

method for multiple-domain networks. We mainly solve two problems in our

work: how to transfer the supervision knowledge in the source domain to

novel domains and how to reduce the performance degradation caused by the

discretization. To this end, we propose the hierarchical knowledge distillation

strategy to mitigate the knowledge gap of multiple domains and deploy mul-

tiple linear classifiers to generate discrete codes based on Gumbel-softmax.

Evaluation on three benchmark datasets against a number of state-of-the-art

discrete embedding methods demonstrates the superiority of TD-DNE on

three tasks: node classification, link prediction and node recommendation.

Limitations: we only investigate the closed-set multi-domains currently

from paper citation networks. However, in practice, an network embedding

method has to face versatile domain’s data, such as Protein-Protein Inter-

action (PPI) dataset and Wikipedia, a co-occurrence network of words. It

would be a challenging task for the model to support more diverse adaption

scenarios, i.e., the open-set domain adaptation discrete network embedding.

Hence, for the future work, we will focus more on the research question how

to develop a generic model which can handle multiple open-set domains with

large distribution shifts.
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