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bstract

Feature models are widely used in domain engineering to capture common and variant features among systems in a particular domain. However,
he lack of a formal semantics and reasoning support of feature models has hindered the development of this area. Industrial experiences also
how that methods and tools that can support feature model analysis are badly appreciated. Such reasoning tool should be fully automated and
fficient. At the same time, the reasoning tool should scale up well since it may need to handle hundreds or even thousands of features a that modern
oftware systems may have. This paper presents an approach to modeling and verifying feature diagrams using Semantic Web OWL ontologies.

e use OWL DL ontologies to precisely capture the inter-relationships among the features in a feature diagram. OWL reasoning engines such as

aCT++ are deployed to check for the inconsistencies of feature configurations fully automatically. Furthermore, a general OWL debugger has
een developed to tackle the disadvantage of lacking debugging aids for the current OWL reasoner and to complement our verification approach.
e also developed a CASE tool to facilitate visual development, interchange and reasoning of feature diagrams in the Semantic Web environment.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Domain engineering is a software reuse approach that
ocuses on a particular application domain. Examples of dif-
erent domains are word processing, device driver for network
dapters, inventory management systems, etc. In domain engi-
eering, we perform domain analysis and capture domain
nowledge in the form of reusable software assets. By reusing
he domain assets, an organization will be able to deliver a new
roduct in the domain in a shorter time and at a lower cost. In
ndustry, domain engineering forms a basis for software product
ine practices [1].
Feature modeling [2] plays an important role in domain
ngineering. Features are prominent and distinctive user visible
haracteristic of a system. Systems in a domain share common
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eatures and also differ in certain features. In feature modeling,
e identify the common and variant features and capture them

s a graphical feature diagram. Feature modeling is considered
s “the greatest contribution of domain engineering to software
ngineering” [2].

Quite a number of feature-based reuse approaches have been
roposed, such as FODA (Feature-Oriented Domain Analysis)
3], FORM (Feature-Oriented Reuse Method) [4] and Fea-
uRSEB [5]. However, there is a lack of methods and tools that
an support analysis over a feature model. Such methods and
ools should provide us with a means of verifying the correct-
ess of a feature model as the design of a feature model may
e inconsistent. Once we have chosen a combination of features
a feature configuration) for a specific software product, such
ools should be able to check the correctness of the configuration
ased on the constraints defined in the feature model. Further-
ore, feature models may evolve when the knowledge of the
omain increases. Thus when features are added/removed, such
ools should enable us to check if a feature configuration is still
alid. Industrial experiences show that in large scale software
roduct line development, the number of features (variabilities)
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ould be thousands and as a result, a substantial amount of effort
s spent on correcting these human errors [6].

Due to the absence of a formal semantics of features and
eature modeling, there is no mature tool that can check the
orrectness of a particular feature configuration based on the
onstraints specified in a feature model. Ideally, such a tool
hould bear a number of requirements:

Automated inconsistency detection. Different feature require-
ents may be contradictory and the product configuration may

e invalid respecting to the feature model. In order to pre-
ent inconsistent products being combined from incompatible
eatures, it is important that inconsistencies can be detected auto-
atically. It allows the domain experts to focus only on the

ystem to be built, rather than the usability of the tool. Fur-
hermore, the automation also enables the computer agents to
ompose software products run-timely based on users demands.

Reasoning efficiency. As a feature model may evolve con-
tantly, specially for the dynamic re-configured feature systems,
t requires the feature reasoning tool be able to conclude the
alidity of configurations in very short time.

Scalability. Modern software could be very large. Applica-
ions like Microsoft Windows OS have thousands of different
eatures. The manual checking of such models/configurations
re highly painstaking and error-prone. Hence, the feature rea-
oning system should scale up well to handle large and complex
odels.
Expressivity. As features interact with each other, the rela-

ionship among various features could be very complicated. The
easoning system should provide for means for representing and
fficient reasoning over the wide variety of feature relations.

Debugging aids. It should provide some explanation as to
hy the feature models are inconsistent.
The Semantic Web has emerged as the next generation of

he Web since the past few years. Ontology languages such
s OWL [7] play a key role in realizing the full potential of
he Semantic Web as they prescribe how data are defined and
elated. According to W3C, “an ontology defines the terms used
o describe and represent an area of knowledge . . . Ontolo-
ies include computer-usable definitions of basic concepts in
he domain and the relationships among them . . . They encode
nowledge in a domain and also knowledge that spans domains.
n this way, they make that knowledge reusable”. One of the
dvantages of logic based ontology languages, such as OWL,
n particular OWL-DL or OWL-Lite, is that reasoners can be
sed to compute subsumption relationships between classes and
o identify unsatisfiable (inconsistent) classes. With the matura-
ion of tableaux algorithm based DL reasoners, such as RACER
8], FaCT++ [9] and PELLET [10], it is possible to perform
fficient reasoning on large ontologies formulated in expressive
escription logics.

There is a strong similarity between Semantic Web ontology
ngineering and feature modeling, both of which represent con-
epts in a particular domain and define how various properties

elate them. Hence, we believe that the Semantic Web can play
mportant roles in domain engineering.

In this paper, we explore the synergy of domain engineering
nd the Semantic Web. Given the rich expressiveness of OWL
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nd its efficient and automated reasoning support, OWL can
e adopted to reason and check feature models effectively. We
ropose methods for transforming a feature model into an OWL
ntology. We use OWL reasoning engine such as FaCT++ [9] to
erform automated analysis over an OWL representation of the
eature model.

The analysis helps us detect possible inconsistencies in fea-
ure configurations. Furthermore, a general OWL debugger has
een developed to tackle the disadvantage of lacking debug-
ing aids for the current OWL reasoner and complement our
erifying approach. We illustrate our approach using an exam-
le of the Graph Product Line (GPL) feature model, which is a
tandard problem proposed in [11] for evaluating product line
echnologies. Moreover, the performance of the approach has
een evaluated by another very large and complicated feature
odel. Furthermore, we have developed a CASE tool to facil-

tate visual development, reasoning and distribution of Feature
odels in the OWL environment.
The remainder of the paper is organized as follows. In Section

, we give a brief overview of feature modeling and Semantic
eb ontology languages and tools. Section 3 describes the rep-

esentation of a feature model in OWL. In Section 4, we show
ow FaCT++, a Semantic Web reasoning engine, can be used to
erform automated analysis over the OWL representation of the
eature models and present the OWL debugger to complement
he FaCT++. In Section 5, we demonstrate the visual CASE
ool we built to facilitate the creation and reasoning about fea-
ure models. Section 7 concludes the paper and describes future
orks.

. Overview

.1. Feature modeling

.1.1. Concepts and features
There are many definitions about features in the software

ngineering community, some of which are summarized below.

A clustering of individual requirement that describe a cohe-
sive, identifiable unit of functionality (Feature Engineering
[12]).
A prominent and distinctive user visible characteristic of a
system (FODA [3]).
A distinguishable characteristic of a concept that is relevant
to some stakeholders (ODM [13]).

We use the ODM definition as it has its root in concep-
ual modeling and cognitive science. In classical conceptual

odeling, we describe concepts by listing their features, which
ifferentiate instances of a concept. In software engineering, we
elieve software features differentiate software systems. Fea-
ures of a software system are not only related to user-visible
unctional requirements of the system, but also related to non-

unctional requirements (quality attributes), design decisions,
nd implementation details.

In domain engineering and software product line context, fea-
ures distinguish different members of a product line. A product
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Table 1
Types of features

Type Notation

Mandatory
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Alternative
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and Undirected graph types and it requires no search algo-
rithm. Table 2 shows the additional constraints among the GPL
features for representing a valid combination, adapted from
Lopez-Herrejon and Batory [11].
ine can be seen as a concept, and members of the product line
an be seen as instances of the concept. Product line members
hare common features and also differ in certain features.

.1.2. Feature diagrams and feature relations
Conceptual relationships among features can be expressed

y a feature model as proposed by Kang et al. [3].
A feature model consists of a feature diagram and other

ssociated information (such as rationale, constraints and depen-
ency rules). A feature diagram provides a graphical tree-like
otation that shows the hierarchical organization of features.
he root of the tree represents a concept node. All other nodes

epresent different types of features.
Table 1 provides an overview of some commonly found fea-

ure types. The graphical notation introduced by Czarnecki and
isenecker [2] is used here. In Table 1, assuming the concept C is
elected, we have the following definitions on its child features:

Mandatory. The feature must be included into the description
of a concept instance.
Optional. The feature may or may not be included into
the description of a concept instance, hence its presence is
optional.
Alternative. Exactly one feature from a set of features can be
included into the description of a concept instance.
Or. One or more features from a set of features can be included
into the description of a concept instance.

Feature models are often used to model commonality and
ariability in a domain-engineering context. Commonalities can

e modeled by common features (mandatory features whose
ncestors are also mandatory), and variabilities can be modeled
y variant features, such as optional, alternative, and or-features.
domain can be modeled as a concept. h
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Feature diagrams sometimes cannot capture all the inter-
ependencies among features. We have identified two additional
elations among features: requires and excludes.

Requires. The presence of some feature in a configuration
requires the presence of some other features.
Excludes. The presence of some feature excludes the presence
of some other features.

As the Requires and Excludes relations do not appear in a fea-
ure diagram, they are usually presented as additional constraints
n a textual description.

.1.3. The graph product line feature model
The Graph Product Line (GPL) example is proposed by

opez-Herrejon and Batory as a standard problem for evaluat-
ng software product line technologies [11]. We use it as a case
tudy to demonstrate the effectiveness of our approach in verify-
ng feature models using OWL. The GPL is a family of classical
raph applications in the Computer Science domain. Members
f GPL implement one or more graph algorithms, over a directed
r undirected graph that is weighted or unweighted, and one
earch algorithm if required.1 We summarize it as follows.

GPL is a typical software product line in that different
PL applications are distinguished by a set of features. Lopez-
errejon and Batory have identified the following features in
PL:

Algorithms. A graph application implements one or more
of the following algorithms: Vertex numbering (Number),
Connected Components (Connected), Strongly Connected
Components (StronglyConnected), Cycle Checking (Cycle),
Minimum Spanning Trees (MST), and Single-Source Shortest
Path (Shortest).
Graph type. A graph is either Directed or Undirected, and its
edges can be either Weighted or Unweighted.
Search. A graph application requires at most one search
algorithm: Breadth-First Search (BFS) or Depth-First Search
(DFS).

Based on the above feature classification, a feature diagram
or the Graph Product Line (GPL) applications can be defined
s shown in Fig. 1.

We also know from our knowledge of the graph algorithms
hat not all combinations of the features described in the above
eature diagram (Fig. 1) are valid in a GPL implementation.
or example, if a graph application implements the Minimum
panning Trees (MST) algorithm, we have to use the Weighted
1 More information about the GPL example can be found online at:
ttp://www.cs.utexas.edu/users/dsb/GPL/graph.htm.

http://www.cs.utexas.edu/users/dsb/GPL/graph.htm
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Fig. 1. A feature model for Graph Product Line.

Table 2
Additional constraints on GPL Algorithms

Algorithm Searches required Required graph type Required weight

Vertex numbering DFS, BFS Directed, Undirected Weighted, Unweighted
Connected components DFS, BFS Undirected Weighted, Unweighted
Strongly connected DFS Directed Weighted, Unweighted
Cycle checking DFS Directed, Undirected Weighted, Unweighted
M
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create customized applications. In particular, the Protégé-OWL
plugin [18] enables editing OWL ontologies and connecting to
reasoning engines such as FaCT++ to perform tasks such as
automated consistency checking and ontology classification.

Table 3
Summary of OWL syntax used in the paper

Notation Explanation

� Super class of all OWL class
N1 � N2 N1 is a sub class/property of N2

C1 � C¬2 Classes C1 and C2 are disjoint
C1 ≡ C2 Class equivalence
inimum spanning tree None
ingle-source shortest path None

From the above GPL model and additional constraints, we can
ee that (GPL, GraphType, Directed, Unweighted, Algorithms,
umber) is a possible configuration derived from the GPL

eature model. However, the configuration (GPL, GraphType,
irected, Undirected, Weighted, Algorithms, Shortest) is invalid

ince the features Directed and Undirected are exclusive to each
ther.

.2. The Semantic Web—languages and tools

The Semantic Web was originally proposed by Berners-Lee
t al. as “an extension to the current web in which information
s given well-defined meaning, better enabling computers and
eople to work in cooperation” [14]. OWL is the latest standard
n ontology languages, which was developed by members of the

orld Wide Web Consortium2 and the DL community. An OWL
ntology consists of classes, properties and individuals. Classes
re interpreted as sets of objects that represent the individuals
n the domain of discourse. Properties are binary relations that
ink individuals, and are interpreted as sets of tuples, which are
ubsets of the cross product of the objects in the domain of
iscourse.
Table 3 summarizes the “DL syntax” used in the following
ections for feature modeling in OWL. Interested readers may
efer to [15] for full details.

2 http://www.w3.org.

C
�
∀

Undirected Weighted
Directed Weighted

Ontology-related tools have been built alongside the devel-
pment of ontology languages.

FaCT++ (Fast Classification of Terminologies) [9] and
ACER (Renamed ABox and Concept Expression Reasoner

16]) are the two most widely accepted OWL reasoners. They
upport automated class subsumption and consistency reasoning
nd some queries on OWL ontologies.

Protégé [17] is a system for developing knowledge-based sys-
ems. It is an open-source, Java-based Semantic Web ontology
ditor that provides an extensible architecture, allowing users to
1�/�C2 Class intersection/union
� ∀P·C Range of property P is class C

/∃P·C allValuesFrom/someValuesFrom restriction,
giving the class that for every instance of this
class that has instances of property P, all/some
of the values of the property are members of the
class C

http://www.w3.org/
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3.1.2. Optional
An optional feature may or may not be included in a diagram,
H.H. Wang et al. / Web Semantics: Science, Service

To better present how to model and reason about feature mod-
ls in OWL, we use Protégé-OWL as the ontology editor and
aCT++ as the reasoner. The OWL model will be automatically
enerated by our feature modeling CASE tool.

. Feature modeling using OWL

In this section, we describe how to build a Semantic Web
nvironment for feature modeling. Various feature relations can
e model using OWL language constructs. We will discuss four
ypes of feature relations: mandatory, optional, alternative, or
nd the two additional ones: requires and excludes. Model-
ng feature models using OWL has several advantages, such as
acilitating feature model storing, sharing and distributing and
ssisting cooperative designing. In this paper, we only focus on
erifying feature model using OWL.

In order to make use of the full power of FaCT++, we model
he feature relations in OWL DL, since it is more expressive
han OWL Lite and still retains decidability. As TBox reason-
ng is more comprehensive than that of ABox, we will model
eature diagrams and feature configurations using OWL classes
nd properties instead of individuals. In this way the reasoning
ower of the engine is exploited to detect inconsistencies. Ref.
19] gives some more detailed discussion about the difference
etween those two modelling flavors.

Our presentation of the OWL encoding will be divided into
wo parts. Firstly, we present how a feature diagram and addi-
ional constraints are modeled in OWL, and in the second part,
he modeling of feature configurations are discussed.

.1. Conceptual modeling

Before we model the different feature relations in a feature
iagram, we need to build the OWL ontology for the various
odes and edges in the diagram. The ontology is constructed in
number of steps.

Step 1. We identify the nodes (concepts and features) present
n a feature diagram. Each node in the diagram is modeled as an
WL class. Moreover, we assert that these classes are mutually
isjoint. In OWL, all classes are assumed to overlap unless it is
therwise stated that they are disjoint with each other using a
isjoint axiom. By default, we assume that features with different
ames are distinct.

Step 2. For each of these nodes in the diagram, we create a
ule class. This Rule class has two kinds of conditions: firstly,
necessary and sufficient (NS, EquivalentClass) condi-

ion, using an existential restriction to bind the Rule node to the
orresponding feature node in the diagram; and secondly, a num-
er of (possibly 0) necessary (N, subClassOf) constraints
ater, serving two purposes:

To specify how each of its child features are related to this
node, capturing the various relations between features.
To specify how this feature node is constrained by other fea-

tures, in the form of requires and excludes as discussed in
Section 2.

Step 3. The root concept and features in a feature diagram
re inter-related by various feature relations, represented by dif-

i
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erent edge types in the diagram. In our OWL model, for each
f these edges, we create an object-property. We assert that the
ange of the property is the respective feature class.

For a parent feature G and its child features F1, . . ., Fn, the
nitial modeling above produces the following ontology.

� � hasG � ObjectProperty
Rule � � � � ∀ hasG·G

GRule ∃ hasG·G
1 � �
1Rule � � hasF1 � ObjectProperty
. . � � hasF1·F1

n � � F1Rule ∃ hasF1·F1

nRule � � . . .

hasFn � ObjectProperty
� ¬Fi, for 1 ≤ i ≤ n � � hasFn·Fn

FnRule ∃ hasFn·Fn

i � ¬Fj, for 1 ≤ i, j ≤ n∧i �= j

Now we are ready to model the feature relations using the
ntology. The general definition of each of the four feature rela-
ions will be shown, based on the above feature ontology. The
PL example presented in Section 2.1.3 will be used to illus-

rate the idea. The ontology will be constructed incrementally
o show the modeling of various feature relations and addition
onstraints defined in Table 2.

.1.1. Mandatory
A mandatory feature is included if its parent feature is

ncluded.
For each of the mandatory features F1, . . ., Fn of a parent

eature G, we use one N constraints in GRule to model it. It
s a someValuesFrom restriction on hasFi, stating that each
nstance of the rule class must have some instance of Fi class for
asFi. The following ontology fragment shows the modeling of
andatory feature set and parent feature G.

Rule � ∃ hasF1·F1

. .

Rule � ∃ hasFn·Fn

It can be seen from Fig. 1 that the root node GPL has a
andatory child feature GraphType, which is itself a non-leaf

ode. We create two new classes for these two non-leaf nodes.3

PL � � hasGPL � ObjectProperty
raphType � � � � hasGPL·GPL
PLRule � � GPLRule ∃ hasGPL·GPL

raphTypeRule � �
asGraphType � ObjectProperty
� hasGraphType·GraphType
raphTypeRule ∃ hasGraphType·GraphType
PLRule � ∃ hasGraphType·GraphType

The statement GPLRule � ∃ hasGraphType·GraphType
nsures that GPL will have some GraphType as one of its child
eatures.
f its parent is included.

3 Disjointness and range statements will not be shown from here onwards.
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For each of the optional features F1, . . ., Fn of a parent
eature G, no additional statements are required to model this
elationship.

Fig. 1 shows that feature Search is an optional feature for
PL. That is, Search may, or may not be included in a configu-

ation of GPL.
As usual, we create one new class SearchRule for Search since

t is a non-leaf node, and one object-property hasSearch. The
ntology is augmented as follows. Note that no new restriction
n GPL is added.

earch � � hasSearch � ObjectProperty
earchRule � � SearchRule ∃ hasSearch·Search

.1.3. Alternative
As stated in Section 2, one and only one feature from a set

f alternative features can be included, if their parent feature is
ncluded in a configuration.

Hence, for a set of alternative features F1, . . ., Fn and a parent
eature G, we use disjunction of someValuesFrom restric-
ions over hasFis to ensure that some feature will be included.

e use the complement of distributed disjunction of the conjunc-
ion of two someValuesFrom restrictions to ensures that only
ne feature can be included. The symbol � represents distributed
isjunction.

Rule � � (∃ hasFi·Fi), for 1 ≤ i ≤ n
Rule � ¬ � (∃ hasFi·Fi � ∃ hasFj·Fj), for 1 ≤ i ≤ j ≤ n

Fig. 1 shows that features BFS and DFS compose an alterna-
ive feature set for Search. We model this relation as follows.

FS � � hasBFS � ObjectProperty
FSRule � � BFSRule ∃ hasBFS·BFS

FS � � hasDFS � ObjectProperty
FSRule � � DFSRule ∃ hasDFS·DFS

earchRule � ((∃ hasBFS·BFS) � (∃ hasDFS·DFS))
earchRule � ¬ ((∃ hasBFS·BFS) � (∃ hasDFS·DFS))

The last two restrictions ensure that one and only one feature
rom the set of alternative features can be included.

.1.4. Or
According to Section 2, at least one from a set of or features

s included, if the parent feature is included.
For a set of or features F1, . . ., Fn of a parent feature G,

e need to use a disjunction of someValuesFrom restrictions to
odel this relation.

Rule � � (∃ hasFi·Fi), for 1 ≤ i ≤ n

It may be noticed that the definition of or is very similar to that
f alternative, with the omission of the negation of distributed

isjunction to allow for multiple or features to be included.

In Fig. 1, the feature Algorithms has a number of or features.
e use the following constructs to model it. To save space, the

efinitions of the various Rule classes will not be shown.

C
C

C
C
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lgorithms � �
lgorithmsRule � �
asAlgorithms � ObjectProperty
lgorithmsRule ∃ hasAlgorithms·Algorithms

lgorithmsRule � ((∃ hasNumber·Number) �
(∃ hasConnected·Connected) � (∃ hasCycle·Cycle) �
(∃ hasMST·MST) � (∃ hasShortest·Shortest) �
(∃ hasStronglyConnected·StronglyConnected))

.1.5. Requires
A feature may depend on some other features, hence its pres-

nce in a feature configuration requires the appearance of the
thers.

For a given feature G and a set of features F1, . . ., Fn that
requires, besides the NS condition that binds GRule to G, we
ake sure that each of the Fi features appears in a configuration

f G is present.

Rule � ∃ hasF1·F1

. .

Rule � ∃ hasFn·Fn

In Table 2, feature StronglyConnected requires both DFS and
irected, and either Weighted or Unweighted. Its OWL repre-

entation is as follows.

tronglyConnectedRule � �
tronglyConnectedRule ∃ hasStronglyConnected·StronglyConnected

tronglyConnected � ∃ hasDFS·DFS
tronglyConnected � ∃ hasDirected·Directed

Since Weighted and Unweighted form the set of two alterna-
ive features of GraphType, which is itself a mandatory feature
nd exactly one from a set of alternative features must appear in
he configuration, we do not need to express them as additional
onstraints for StronglyConnected.

.1.6. Excludes
The presence of a feature may be inhibited by that of some

ther features. We say the appearance of a feature in a configu-
ation excludes the appearance of some other features.

For a given feature G and a set of features F1, . . ., Fn that G
xcludes, we make sure, using the negation of someValues-
rom restriction on hasFi property, that Grule does not have
ny Fi feature.

Rule � ¬ (∃ hasFi·Fi)
. .

Rule � ¬ (∃ hasFn·Fn)

The next example shows both requires and excludes con-
traints for a single feature. In GPL, cycle checking algorithm
ycle excludes the use of breadth-first search BFS. From Table 2,
e know that Cycle only requires DFS, hence it also excludes
ycleRule � �
ycleRule ∃ hasCycle·Cycle

ycleRule � ∃ hasDFS·DFS
ycleRule � ¬(∃ hasBFS·BFS)
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The complete GPL ontology model in XML syntax can be
ound at http://www.comp.nus.edu.sg/∼liyf/GPL.owl.

. Verifying and debugging feature configuration in
WL

.1. Verifying feature configuration

In feature modeling, a feature configuration derived from a
eature model represents a concrete instance of a concept (i.e., a
pecific system in a domain). Intuitively, given a feature ontol-
gy, features and concepts in a configuration should be ground
nstances (OWL individuals) of the OWL classes defined in the
ntology. Hence modeling feature configurations using individ-
als is a straightforward approach.

However, a number of reasons made us model feature con-
gurations as OWL classes but not individuals.

Firstly, since feature models and individual feature configura-
tions both classify individual implementations, representing
the specific configuration as a sub-concept is the most natural
from a semantic viewpoint.
Secondly, the reasoning support that we need is more readily
available in TBox than in ABox. (1) Inconsistencies asso-
ciated with an ABox may not be discovered by the TBox
reasoning engine such as FaCT++. (2) If an ABox reasoner
discovers that a particular feature configuration is inconsis-
tent, it can only indicate that the entire ontology (ABox) is
incoherent. It cannot determine, however, which instances
actually cause the inconsistency. This greatly increases the
difficulty in debugging the configurations. On the other hand,
most of the reasoners are capable of locating the specific
classes that are inconsistent.

As a result, in our approach, we use classes to simulate fea-
ure and concept instances so that the full power of the reasoning
ngine can be exploited to detect inconsistencies in the config-
ration.

efinition 1. Feature configuration modeling. A feature con-
guration is a set of features that an instance of a concept may
old. The modeling of a given feature configuration is as follows.

We model the concept node in the configuration as a subclass
f the rule class for the root in a feature diagram.

We use an existential restriction for each feature included in
he configuration.

For each feature F present in a feature diagram but not in its
onfiguration, we use a “¬ ∃ hasF·F” restriction to prevent the
easoning engine from inferring the existence of this feature in
he configuration. This is necessary because of the Open World
ssumption adopted by OWL [20].
We make the concept class to be equivalent (NS condition)

o the conjunction of the above constraints.
For a concept instance C derived from a feature diagram with
oot concept G and a set of features F1, . . ., Fn, assuming that
1, . . ., Fi appear in the configuration of C and Fi + 1, . . ., Fn do
ot, a feature configuration can be modeled as follows.

s
f
n
t
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� GRule
≡ � (∃ hasFj·Fj, for 1 ≤ j ≤ i) �

� (¬ ∃ hasFk·Fk, for i < k ≤ n)

The feature configuration is constructed as a separate ontol-
gy and the reasoning engine is invoked to check its consistency.
he configuration is valid if the ontology is checked to be con-
istent with respect to the feature diagram ontology.

We use the GPL example to illustrate this approach. Suppose
hat we have a configuration containing a concept instance E
nd some features for the above GPL feature diagram. We call
he instance node the class E. Note that the namespace name of
he feature diagram ontology is GPL and is omitted from the
resentation.

� GPLRule
≡ ((∃ hasConnected·Connected) � (∃ hasSearch·Search) �

(∃ hasAlgorithms·Algorithms) � (∃ hasBFS·BFS) �
(∃ hasGraphType·GraphType) � (∃ hasNumber·Number) �
(∃ hasWeighted·Weighted) � (∃ hasUndirected·Undirected) �
(∃ hasStronglyConnected·StronglyConnected) �
(¬ ∃ hasDirected·Directed) � (¬ ∃ hasMST·MST) �

(¬ ∃ hasShortest·Shortest) �
(¬ ∃ hasUnweighted·Unweighted) � (¬ ∃ hasDFS·DFS) �

(¬ ∃ hasCycle·Cycle))

If we input this ontology into Protégé and use FaCT++ to
heck it, FaCT++ will complain that E is inconsistent (Fig. 2).
n Protégé the inconsistent classes are marked as red. A closer
nspection reveals that StronglyConnected requires DFS and
irected, which are both absent in the configuration.
We correct the above configuration by asserting that E does

ave DFS and Directed. Since BFS and DFS and Undirected and
irected are alternative features, we remove BFS and Undirected

rom E.

� GPLRule
≡ ((∃ hasConnected·Connected) � (∃ hasSearch·Search) �

(∃ hasAlgorithms·Algorithms) � (∃ hasDFS·DFS) �
(∃ hasGraphType·GraphType) � (∃ hasNumber·Number) �
(∃ hasWeighted·Weighted) � (∃ hasDirected·Directed) �
(∃ hasStronglyConnected·StronglyConnected) �
(∃ hasUndirected·Undirected) � (∃ hasMST·MST) �

(∃ hasShortest·Shortest) �
(∃ hasUnweighted·Unweighted) � (∃ hasBFS·BFS) � (∃ hasCycle·Cycle))

However, FaCT++ complains that the updated concept E is
till inconsistent. The source of this inconsistency does not come
rom StronglyConnected. However, it is caused by the fact that
eature Connected requires Undirected, which is absent from the
onfiguration. Then we realize that features StronglyConnected
nd Connected are mutually exclusive in any valid configuration
ince they require different features from a set of alternative
eatures.

After we remove Connected from the configuration of E,
aCT++ confirms that the ontology is consistent, hence the
onfiguration is valid.

Although FaCT++ cannot tell why a configuration is invalid
debugging feature models in OWL will be discussed in a later

ection), it can identify the inconsistency of a configuration with
ull automation. As the case study shows, with the growth of the
umber of features in a feature diagram, manual checking of
he consistency of a configuration is very laborious and highly

http://www.comp.nus.edu.sg/~liyf/GPL.owl
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Fig. 2. FaCT++ detects an inconsistency.

rror-prone. Moreover, since ontology reasoning tools are devel-
ped to reason about knowledge bases with enormous size, this
pproach is very scalable. The automated approach we adopt
ere is thus very advantageous.

.2. Debugging feature OWL models

The OWL reasoners, like FaCT++, can perform efficient rea-
oning on large ontologies automatically. Another important
equirement for feature model reasoning tool, as discussed in
ection 1 is the debugging support. However, the lack of debug-
ing aids is a major shortcoming for the existing OWL reasoners.
hen checking satisfiability (consistency), the OWL reasoners

an only provide a list of unsatisfiable classes and offer no further
xplanation for their unsatisfiability. It means that the reasoner
an only conclude if a feature model is consistent and flag the
nvalid configurations. The process of “debugging” a feature

odel is left for the user. When faced with several unsatisfi-
ble configurations in a moderately large feature model, even
xpert ontology engineers can find it difficult to work out the
nderlying error.

Debugging an ontology has been well recognized as a non-
rivial task.

To provide some debugging assistance for the inconsistent
eature models, we have built an OWL debugging tool based on
he heuristics [21]. Our OWL debugger has been designed to
dopt the general OWL DL ontology and it can be also used to
xplain the errors in the feature models as well.

Over the past five years we have presented a series of tuto-
ials, workshops and post-graduate modules on OWL DL and
ts predecessors. Based on our experiences, a list of frequently

ade errors have been identified as reported in [22]. This cata-
ogue of common errors has been used in turn to develop a set

f heuristics that have been incorporated into a debugging tool
or Protege-OWL [23].

The heuristic debugger treats the tableaux reasoner as a
black box” or “oracle”. This “black box” approach has the

(

Fig. 3. The debugging process.

dvantage that it is independent of the particular reasoner used.
t works with any DIG [24] compliant reasoner, even ones which
ave been specially augmented or adapted.

Being independent of the reasoner has advantages even if only
single reasoner is to be used. Many modern reasoners transform

he input ontology in order to optimize the reasoning process.
lthough logically equivalent, the internal representation may
ear little resemblance to the ontology as it was constructed by
he user. Given such transformations, even it were possible for
he reasoner to ‘explain’ its actions, the explanation in terms of
he transformed ontology would be unlikely to be of direct use
o the user. An additional advantage of the ‘black box’ approach
s that it is independent of such transformations.

.2.1 Debugging process
Fig. 3 illustrates the main steps of the debugging process.

he user selects an OWL class for debugging, which is checked
o ensure it is indeed inconsistent, and that the user is making
valid request to the debugger. The debugger then attempts to

dentify the unsatisfiable core for the input class in order to min-
mize the search space. The unsatisfiable core is the smallest set
f local conditions (direct super classes) that leads to the class
n question being inconsistent. Having determined the unsat-
sfiable core, the debugger attempts to generate the debugging
uper conditions, which are the conditions that are implied by
he conditions in the unsatisfiable core. Fig. 8 presents the rules
hat are used in generating the debugging super conditions. The
ebugger then examines the debugging super conditions in order
o identify the most general conflicting class set, which is ana-
yzed to produce an explanation as to why the class in question is
nconsistent.

There are many different ways in which the axioms in an
ntology can lead to an inconsistency. However, in general, we
ave found that most inconsistencies can be boiled down into a
mall number of ‘error patterns’. In summary the ‘error patterns’
or class inconsistency may be boiled down to the following
easons:
The inconsistency is from some local definition.

1) Having both a class and its complement class as super con-
ditions.
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2) Having both universal and existential restrictions that act
along the same property, whilst the filler classes are disjoint.

3) Having a super condition that is asserted to be disjoint with
owl:Thing (�).

4) Having a super condition that is an existential restriction that
has a filler which is disjoint with the range of the restricted
property.

5) Having super conditions of n existential restrictions that act
along a given property with disjoint fillers, whilst there is a
super condition that imposes a maximum cardinality restric-
tion or equality cardinality restriction along the property
whose cardinality is less than n.

6) Having super conditions containing conflicting cardinality
restrictions.

The inconsistency is propagated from other source.

1) Having a super condition that is an existential restriction
that has an inconsistent filler.

2) Having a super condition that is a hasValue restriction that
has an individual that is asserted to be a member of an
inconsistent class.

Due to the space limitation, some of the patterns have been
mitted here. The debugger determines which of the above cases
ed to an inconsistency, and then uses provenance information
hat describes how the debugging super conditions were gener-
ted in order to determine the ‘root’ cause of the inconsistency.

Fig. 4 shows the result of debugging the GPL feature ontol-
gy. It suggests that the configuration E is invalid (The class E
s inconsistent) because that Directed cannot both be present (∃
asDirected·Directed) and absent (¬ ∃ hasDirected·Directed).
irected is explicitly stated to be absent. However, it is also

equired from feature StronglyConnected, which is present in

he configuration (see Table 2 for details). As discussed before,
here are more than one reasons leading the configuration E to
eing invalid. The debugger will pick one error each time. Note
hat the primal feedback from the debugger has been presented

Fig. 4. Debugging GPL class.
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n the paper deliberately to give people an intuitive experience of
he OWL debugger. Those information will be further processed
or providing a nature explanation of the reason of a feature
odel been inconsistent and a configuration been invalid.

.3 Evaluation

To better evaluate our approach, we constructed a feature
odel for a large system. It contains around 1000 different

eatures and more than 400 different feature relations covering
andatory, Alternative, Optional, Or features and Requires and
xcludes relations. Ten different configurations has been con-
ucted respecting with the feature models. The evaluation was
onducted on a Pentium IV 2.8 GHz system with 1 GB memory
unning Windows XP.

First, we transform the feature model into OWL (The trans-
ormation process is automatic). We then load the resulted
ntology into FaCT++ and check its consistency.

Note that the feature configurations below are presented in the
ollowing syntax for brevity reasons. The symbol “+” represents
et union. Hence, for example, F416 + F417 denotes the set of
wo members, F416 and F417. The statement Or(PL, F226,
416 + F417) denotes that with PL being the parent concept

or feature) node, features F416 and F417 form an Or feature
et.

Protégé has been used for presenting the OWL ontology.
aCT++ concludes that the feature model is inconsistent using
8.238 s. A large portion of the time consumption is the overhead
rom the OWL editor Protégé itself, e.g. pre-possessing ontology
nd rendering the classes. The reasoning task itself only takes
.306 s. The inconsistency is caused by F136 and F137 being
lternative and they are both included in the description of PL.
he detailed explanations are as follows.

First of all F6 is a mandatory feature of PL, F126 is a
equired feature of F6 and F137 is a required feature of F126.
ence, F137 must be held by PL.
In addition, F416 is required by F126, so F416 also must be

eld by PL. Because of the fact Or (PL, F226, F416 + F417),
ince F226 is the parent of F416 and that F416 is held by PL,
ccording to the definition of or type, F226 must be held by PL.

Because of the fact Optional (PL, F136, F226 + F227)
nd the same reasoning as above, F136 must also be held by
L. As F136 and F137 are alternative features, the model is

nconsistent.
Our debugger can be used to trace these reasons effectively. If

e remove the constraint that feature F137 is a required feature
f F126, the feature model becomes consistent, concluded by
aCT++ as well.

After that, we translate the 10 configurations into OWL, as
hown in Fig. 5, FaCT++ picks up all the inconsistent configura-
ions as expected. It takes only 32.766 s for FaCT++ to check the
en configurations. The reasoning task itself only takes 9.406 s.
he debugger can be used to help us explain the reason why a

onfiguration is invalid as well. For example, as shown in Fig. 6,
he reason why the configuration 2 is invalid is because that
416, which is required by F126 is missed from the configu-

ation.
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Fig. 5. Discovery of invalid configurations.

Apart from verifying if a configuration is entailed from the
eature models (consistent), FaCT++ can also support the check-
ng of semantic equivalence of feature models. Two feature

odels can be semantically equivalent even though they have
ifferent appearances in diagram. By “semantically equivalent”,
e mean that all valid feature instances (configurations) derived

rom one feature model can also be derived from the other model,
nd vice versa. In OWL, we can convert this problem to a sub-
umption (subclass) reasoning task and use FaCT++ to test it.
his can also be done with full automation.

. Tool support for feature modeling in OWL

In the previous section, we showed that OWL can be used
o do the feature modeling. However it will be a tedious job
or software engineers to design their system at such a level
f details. In this section we present a visual case tool which

rovides a high-level and intuitive environment for constructing
eature models in OWL. Our feature modeling tool was built
ased on the meta-tool Pounamu [25]. Pounamu is a meta-case
ool for developing multi-view visual environment. Fig. 7 shows

e
s
e

Fig. 6. Debugger determines why
Fig. 7. A case tool for feature modeling.

he GPL feature model defined by the tool. From it we can see
hat the GPL feature model can be defined easily by creating
nstances of the pre-defined model entities and associations.

Note that additional constraints among the features can also
e specified in the “constraints” attribute of a concept. By
riggering the defined event handler menu item in the tool, it
ransforms all the default XML format of each feature in the
iagram into a single OWL representation of the feature model
nd saves it for later reasoning.

One undergoing development is to develop our tool as a
lugin within the overall Protege plug-and-play framework.

. OWL experiences discussion

In this paper, we presented an OWL application. We believe
hat feature modeling is a novel domain for OWL. In this sec-
ion, we would like to feedback some of our experiences of
sing OWL to the Semantic Web community for the benefit of
esigning the next generation of OWL languages.

As shown in the previous sections, OWL provides a very

xpressive solution for providing fully automated, efficient and
calable reasoning service for verifying feature models. How-
ver, there are also some nuisances about current OWL.

Configuration 2 is invalid.
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Fig. 8. Rules for the membership of Debugging Super Conditions (DSC).
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Apart from the lack for debugging aids as discussed before,
nother omission in the OWL language that we feel confounded
s that there is no construct in OWL to make a set of classes

utually disjoint from each other, although OWL DL has the
wl:AllDifferent construct to make a set of individuals mutually
istinct from each other. This is because that the designers of
WL believe that “As the number of mutually disjoint classes
rows the number of disjointness assertions grows proportion-
lly to n2. However, in the use cases we have seen, n is typically
mall”. The experiences in practice are that this is not the case—n
s typically large enough such that the number of disjoint axioms
ecomes seriously problematic. For example, in our large feature
odels, there are about one thousand different features, which

re distinct with each other. In the respected OWL ontology,
lmost 97% of axioms are the disjoint axioms for asserting the
utual disjointness. In terms of file size, these triples cause the
MB owl file to blow up to 24 MB. Similar problems are found

n other biomedical ontologies such as GALEN, SNOMED, the
CI Thesaurus and the Gene Ontology. We believe that the
wl:AllDisjoint construct should be added to the next version
f OWL. Although it does not increase the expressive power, it
ill ameliorate the practical situation in terms of reducing model

nd file sizes, more efficient computation and clearer model
ontent.

.1. Feature modeling beyond OWL

OWL has considerable expressive power. All of the stan-
ard feature relationship types can be expressed within OWL.
owever, to retain the decidability of key inference problems

n OWL DL and OWL Lite, OWL has expressivity limitations.
ome non-standard and complicated feature type may not be
ble to be expressed within OWL. In this case, a more expressive
anguage like SWRL [26] or SWRL-FOL [27] may be needed.
owever, currently there is no mature reasoning tools for these

xpressive languages.

. Conclusion

In domain engineering, feature models are used to capture
ommon and variant features among systems in a particular
omain. Current efforts on feature modeling are largely graph-
cal and informal, which have hindered precise representation
nd automated analysis of feature models. In the Semantic Web,
n ontology is a representation of domain knowledge, which has
ormally-defined semantics and machine-understandable repre-
entation.

As both feature models and ontologies are intended to capture
omain knowledge conceptually, it is natural to use ontology
anguages to rigorously represent and formally verify feature

odels and their configurations. The similarity between the two
reas also suggests that ontology engineering techniques are
pplicable to feature modeling.
In this paper, we propose a Semantic Web approach to fea-
ure modeling, verification and debugging. We use the OWL
L language to represent feature models and configurations

n an unambiguous way. Features of a particular domain are
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dentified as OWL classes. Feature diagrams represent a graphi-
al means of expressing relationships among different features.
hese relationships are captured by OWL properties. Feature
onfigurations represent possible combinations (valid or invalid)
f feature instances of a feature diagram. As discussed in Sec-
ion 3, although it is natural to model feature configurations as
WL individuals, we model configurations using OWL classes

n order to make use of the comprehensive reasoning support for
Box which is not available for ABox.

Feature model and configuration verification is an impor-
ant task in feature modeling. With the growth of the number
f features in a feature model, manual checking of validity is
ery laborious and error-prone. As OWL has a formal and rig-
rous semantical basis and the decidability of OWL DL, fully
utomated analysis is achievable.

In our approach, we use an OWL reasoning engines such
s FaCT++ to perform automated analysis over the OWL rep-
esentation of the feature models. The analysis helps us detect
ossible inconsistencies in feature configurations. As such rea-
oning engines are designed to handle large-scale knowledge
ases, efficient and effective analysis of large feature models
re possible.

The Graph Product Line example, a standard problem
or evaluating software product line technologies, was used
hroughout the paper to illustrate our approach. We demonstrated
hat inconsistencies within various feature configurations are
ffectively detected by reasoning engines such as FaCT++.

Although reasoners such as FaCT++ and RACER are fully
utomated and very scalable. They cannot indicate the reasons
s to why a class is inconsistent. With the growth of num-
ers of features in a feature diagram, the manual debugging of
nvalid configurations will be a very laborious and error-prone
rocess. We use a general OWL debugger to automatically ana-
yze an inconsistent concept instance. The debugger will provide
ome insight and hints on how the inconsistency is caused. This
reatly helps to reduce the efforts and to improve debugging
fficiency.

A large feature model containing some 1000 features with
en configurations was constructed to test the reasoning and
ebugging of feature models/configurations. It turns out that our
pproach is quite effective and precise.

To facilitate visual development and analysis of feature mod-
ls, we also develop a CASE tool that enables drawing feature
iagrams and expressing additional constraints on various fea-
ures. Feature diagrams are then converted to OWL syntax, made
eady for online interchange and analysis.

We believe that the Semantic Web can play important roles
n domain engineering, and we will continue exploring the
ynergies between them. In the future, we plan to develop an
ntegrated environment based on the current tool to support the
onstruction, analysis and exchange of the feature models and
onfigurations in OWL.
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[8] V. Haarslev, R. Möller, RACER system description, in: Proceedings of the
Automated Reasoning: First International Joint Conference, No. 2083 in
Lecture Notes in Computer Science, Siena, Italy, 2001, pp. 701–706.

[9] I. Horrocks, Fact++ web site. http://owl.man.ac.uk/factplusplus/.
10] B.P. Evren Sirin, Pellet: an owl dl reasoner, in: R.M. Volker Haaslev

(Ed.), Proceedings of the International Workshop on Description Logics
(DL2004), 2004.

11] R.E. Lopez-Herrejon, D.S. Batory, A standard problem for evaluating
product-line methodologies, in: Proceedings of the Third International
Conference on Generative and Component-Based Software Engineering,
Springer-Verlag, Erfurt, Germany, 2001, pp. 10–24.

12] C. Turner, A. Fuggetta, L. Lavazza, A. Wolf, A conceptual basis for feature
engineering, J. Syst. Softw. 49 (1999) 3–15.

13] M.S. et al., Software technology for adaptable reliable system (STARS)
organization domain modeling (ODM) guidebook version 2.0, Tech. Rep.
STARS-VC-A025/001/00, Lockheed Martin Tactical Defense Systems,
Manassas, VA, 1996.

14] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, Sci. Am. 284
(5) (2001) 35–43.

15] I. Horrocks, P.F. Patel-Schneider, F. van Harmelen, From SHIQ and RDF
to OWL: the making of a web ontology language, J. Web Semant. 1 (1)
(2003) 7–26, URL download/2003/HoPH03a.pdf.
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