
Gaussian Embedding of Large-scale Attributed
Graphs

Bhagya Hettige1, Yuan-Fang Li1, Weiqing Wang1, and Wray Buntine1

Monash University, Clayton
{bhagya.hettige,yuanfang.li,teresa.wang,wray.buntine}@monash.edu

Abstract. Graph embedding methods transform high-dimensional and
complex graph contents into low-dimensional latent representations. They
are useful for a wide range of graph analysis tasks including link predic-
tion, node classification, recommendation and visualization. Most exist-
ing approaches represent graph nodes as point vectors in a low-dimensional
embedding space, ignoring the uncertainty present in many real-world
graphs. Furthermore, many real-world graphs are large-scale and rich
in content (e.g., node attributes). In this work, we propose GLACE,
a novel, scalable graph embedding method that preserves both graph
structure and node attribute information effectively and efficiently in
an end-to-end manner. GLACE effectively models uncertainty through
Gaussian embeddings, and supports inductive inference of new nodes
based on their attributes. In our comprehensive experiments we evaluate
GLACE on real-world graphs, and the results demonstrate that GLACE
significantly outperforms state-of-the-art embedding methods on multi-
ple graph analysis tasks.

Keywords: graph embedding · link prediction · node classification.

1 Introduction

Much real-world data can be naturally delineated as graphs, e.g. citation net-
works [15, 1, 17, 8], social-media networks [10], language networks [17, 16], and
knowledge graphs [11, 2]. Graph embedding methods transform graph nodes with
highly sparse, high-dimensional content into low-dimensional representations.
They are effective in capturing complex latent relationships between nodes [13,
17, 8, 6] and have been successfully employed in a wide array of graph analysis
tasks such as link prediction, node classification, recommendation and visualiza-
tion. The effective embedding of graph data faces a number of challenges.

Uncertainty modelling: Most of the previous work [17, 6, 13, 8] on graph
node embedding represents nodes as point vectors in the embedding space, which
fails to capture the uncertainty in node representations. Furthermore, graphs
constructed from real-world data can be very complex, noisy and imbalanced.
Therefore, a mere point-based representation of the nodes may not be able to
capture the variability of the graph and so some hidden patterns [1]. Scalability:
Many real-world graphs are very large, containing millions of nodes and edges.

2 B. Hettige et al.

The efficient embedding of such large graphs is thus important but challenging.
LINE [17] is handling large-scale graphs using an optimized loss function they
develop based on local and global network structure, but it does not consider
node attributes. Inductiveness: Most existing graph embedding approaches are
transductive and cannot infer embeddings for nodes unseen at training time. In
practice, however, graphs evolve with time, and new nodes and edges can be
added into the graph. There are a few recent studies [8, 1] which tried to provide
a solution to this limitation. However, these methods either do not scale up to
large graphs, or require additional information about the graph structure.

In this paper, we propose GLACE, Gaussian representations for Large-scale
Attributed graph Content Embedding, a novel graph embedding method that
addresses all of the above challenges. GLACE learns node embeddings as prob-
ability distributions from both node attributes and graph structure information
in an end-to-end manner: we use node attributes to initialize the structure-
based loss function, and update and transfer the learning back to the encoding
function to minimize the loss. We use a proximity measure to quantify graph
properties to be preserved in the embedding space, i.e. first-order proximity to
learn from observed relations and second-order proximity to learn from a node’s
neighbourhoods. We learn from node attributes by a non-linear transformation
function (encoder), and then define Gaussian embedding functions to model the
uncertainty of the embedding by feeding the encoded representation. There-
fore, the mean vector of the representation denotes the position of the node in
the embedding space, while the covariance matrix gives the uncertainty of the
node embedding. We deal with new nodes by learning from node attributes, so
that a learned model can be used to infer embeddings for new nodes based on
their attributes. The combination of node attributes and local sampling allows
GLACE to be scalable, being able to support graphs of hundred thousand nodes
with hundred thousand attributes and half a million edges on modest hardware.
GLACE derives embeddings from node attributes, which allows it to converge
faster during training. The main contributions of this work: (1) we propose a
novel, end-to-end method to embed nodes as probability distributions to model
uncertainty of the embedding, (2) our model is inductive as it can infer em-
bedding for unseen nodes using node attributes, (3) our model is scalable and
efficient, and supports graphs with hundreds of thousands of nodes on modest
hardware with a fast convergence rate, while other methods require significantly
more memory, more time, or both, and (4) we perform extensive experiments
on real-world datasets for link prediction, node classification, induction, and
visualization, and GLACE significantly outperforms the baselines.

2 Related Work

Below we give a brief overview of recent graph embedding techniques. A more ex-
tensive introduction to the area can be found in these recent survey studies [3, 7,
5]. Unsupervised graph embedding approaches attempt to preserve graph proper-
ties in the embedding space. Random walk-based methods such as DeepWalk [13]

Gaussian Embedding of Large-scale Attributed Graphs 3

and node2vec [6] generate random walks for each node, and learn embeddings us-
ing these node sequences with a technique similar to Skip-Gram [12]. LINE [17]
learns from proximity measures considering first- and second-order proximity.
SDNE [20] proposes a semi-supervised model, in which they learn first-order
proximity in the supervised component and second-order proximity in the unsu-
pervised component. Graph2Gauss [1] proposes a personalized ranking scheme
such that for a given anchor node, nodes in the immediate neighborhood are
closer in the embedding space, while nodes multiple hops away are placed in-
creasingly more distant to the node. Variational graph auto-encoders (VGAE) [9]
is also an unsupervised learning method for undirected graphs.

Learning uncertainty of embeddings has been shown to produce meaningful
representations [19, 1]. Word2gauss [19] proposes a Gaussian embedding space to
model word embeddings. Graph2Gauss [1] captures uncertainty of graph nodes
similarly. Both methods show that capturing embedding uncertainty learns more
meaningful representations in their evaluation tasks. Another recent study [21]
proposes to learn node embeddings as Gaussian distributions using the Wasser-
stein metric rather than KL divergence, as the former preserves edge transitivity.

Graphs can vary greatly in size (i.e. number of nodes and edges). Some
methods are designed to be scalable while others do not scale well due to high
space and/or time complexities. LINE [17] is a method designed to handle large-
scale graphs efficiently using negative sampling and edge sampling optimization
strategies. Graph2Gauss [1], on the other hand, exhibits poor scalability as it
needs to compute hops for each node up to a predefined number. This process
is not only time consuming, but also consumes significant memory.

3 GLACE Methodology

3.1 Notations and Problem Definition

Homogeneous Graph: Let G = (V,E,X) be an attributed homogeneous
graph, where V is the set of nodes, E is the set of edges between nodes in V,
where each ordered pair of nodes (i, j) ∈ E is associated with a weight wij > 0
for edge from i to j, and X ∈ R|V|×D is the attribute matrix of the nodes which
represents an attribute matrix of V, where xi ∈ X is a D-dimensional attribute
vector of node i.
GLACE Embedding: GLACE aims to represent each node i ∈ V as a low-
dimensional Gaussian distribution embedding, zi = N (µi, Σi), where µi ∈ RL,
Σi ∈ RL×L where L is the embedding dimension with L� |V|, Dk, in embedding
space RL, such that nodes close to each other in the original graph are also close
in the embedding space. We learn Σi as a diagonal covariance vector, Σi ∈ RL,
instead of a covariance matrix to reduce the number of parameters to learn.

3.2 Overall Architecture

GLACE is an end-to-end framework for learning node embeddings using both
node attributes and graph structure in an efficient manner. Node attributes are

4 B. Hettige et al.

first fed through a non-linear transformation function and then through two non-
linear transformation functions to obtain a mean vector and diagonal covariance
vector which represent a Gaussian embedding. GLACE is flexible in handling
different node attribute formats, such as text and images, since we can define
the encoder architecture accordingly. Our unsupervised loss function is defined
based on graph structure. We learn local and global graph structure using our
proximity measure, since we can optimize the function using negative sampling
[12] to achieve scalability. Local structure is learnt with first-order proximity,
i.e. based on edge weight between nodes [3], and global structure is learnt with
second-order proximity, i.e. based on similarity between neighborhoods of a pair
of nodes [3]. GLACE learns in an end-to-end manner: forward learning: we use
encoded node attributes as input to the optimization function of Graph Struc-
ture Encoding, and back-propagation: we minimize the optimization function
of Graph Structure Encoding by updating the node embeddings, and then prop-
agating the update back to the Node Attribute Encoding part.

3.3 Node Attribute Encoding

We learn node attributes using two levels of transformations, encoding and
Gaussian embedding. At the first level, we use a multi-layer perceptron (MLP)
to encode the node attribute information and generate an intermediate vector
from node attribute information. We use a feed-forward encoder, f : V → Rm
which takes an attribute vector xi ∈ X as input for node i, and outputs a
m-dimensional intermediate vector.

ui = f(xi) = Wxi + b (1)

The attribute encoder of the model is expressed using weight matrix W ∈ RD×m
and bias vector b ∈ Rm where m is the dimension of the hidden representation.
Note here that, we can easily alter the encoder architecture such that it aligns
and captures different types of inputs (e.g. images, text). But for efficiency pur-
poses we have only considered an MLP architecture. This intermediate vector
ui is then used as input to two encoders fµ and fΣ to learn µ and Σ in the
Gaussian distributions. The final latent representation of node i of type k is
zi = N (µi,Σi), where µi = fµ(f(xi)) and Σi = fΣ(f(xi)).

µi = fµ(ui) = Wµui + bµ (2)

Σi = fΣ(ui) = ELU(WΣui + bΣ) + 1 (3)

The two functions defined in Equation (2) with Wµ ∈ Rm×L and bµ ∈ RL,
and in Equation (3) with WΣ ∈ Rm×L and bΣ ∈ RL denote the Mean Encoder
and Covariance Encoder respectively. Note that, as the difference between differ-
ent node types have been caught by ui generated by fk, all the node types share
the same Mean Encoder and Covariance Encoder in GLACE to achieve good
scalability. Here for the uncertainty representation, we constrain the covariance
matrix to be diagonal to reduce the number of parameters to learn. The expo-
nential linear unit (ELU) [4] is used as the activation function in the Covariance
Encoder. An ELU can have negative values as well, and it drives the mean of

Gaussian Embedding of Large-scale Attributed Graphs 5

the activation outputs be closer to zero which makes learning and convergence
much faster. We add 1 to obtain positive covariance.

Note that, even inside the Node Attribute Encoding component, GLACE also
learns the parameters in an end-to-end manner. Through the shared parameter
ui, GLACE forwards the updating inside Encoder fk to Gaussian Encoders
fµ and fΣ , and propagates the updating inside Gaussian Encoders back to fk
automatically during the optimization process.

3.4 Graph Structure Encoding

GLACE aims at capturing both local (first-order) and global (higher-orders)
proximity information in graphs. But considering the scalability to large-scale
graphs, for the global information, GLACE only encodes second-order proximity.
For each node i, the learned Gaussian distributions, zi, in Section 3.3 are used
as the input to the Graph Structure Encoding component in this section.

Dissimilarity measure: Let d(zi, zj) be the dissimilarity measure between
latent representations of two nodes i, j ∈ V. Since zi and zj are Gaussian distri-
bution embedding, we should select a dissimilarity measure to be a function
to measure the dissimilarity between two probability distributions. Therefore,
the dissimilarity measure between two latent representations is calculated us-
ing asymmetric KL divergence, d(zi, zj) = DKL(zj ||zi). Alternatively, we could
also use a Wasserstein metric instead of KL divergence as in [21]. Since KL
divergence is asymmetric, for undirected graphs we extend the distance to a
symmetric dissimilarity measure as:

d(zi, zj) =
1

2
(DKL(zi||zj) +DKL(zj ||zi)) (4)

First-order proximity: We learn first-order proximity of nodes, by mod-
elling local pairwise proximity between two connected nodes in the graph. The
empirical probability for first-order proximity measure observed in the original
graph between nodes i and j is defined as the ratio of the weight of the edge
(i, j) to the total of the weights of all the edges in the graph. For each undirected
edge (i, j) we define the joint probability as a sigmoid function between node i
and j. These two functions can be defined as respectively:

p̂1(i, j) =
wij

Σ(̂i,ĵ)∈Ewîĵ
and p1(i, j) =

1

1 + exp (d(zi, zj))
(5)

We preserve the first-order proximity by minimizing the distance between the
two distributions, O1 = DKL(p̂1||p1), for all edges. Motivated by this function,
we use the following objective function as in LINE [17] for first-order proximity:

O1 = −
∑

(i,j)∈E

wij log p1(i, j) (6)

Second-order proximity: Nodes which have more similar neighbourhoods
should be closer in embedding space with respect to the nodes with less similar
neighbourhoods. The empirical probability of second-order proximity observed

6 B. Hettige et al.

for edge (i, j) can be defined as the ratio of the weight of edge (i, j) to the total
weight of edges from node i to its immediate neighborhood, N(i). Similarly to
LINE, each node is represented with two complementary embeddings, the first
embedding zi, is as defined previously, and the second is the context embedding,
h′i, defined in Eq. (10) and (11). For each directed edge (i, j) (if the edge is
undirected, it can be treated as two edges with equal weights and opposite
directions) we define the the probability of context j generated by node i as a
softmax function. The two probability distributions are defined as follows:

p̂2(j|i) =
wij

Σî∈N(i)wîi
and p2(j|i) =

exp (−d(zi, z
′
j))

Σî∈V exp (−d(zi, z′
î
))

(7)

We preserve the second-order proximity by minimizing the distance between the
two distributions, O2 =

∑
i∈V λiDKL(p̂2(.|i)||p2(.|i)), where λi is the prestige of

node i. Motivated by this function, we use the following objective function as in
LINE [17] for second-order proximity:

O2 = −
∑

(i,j)∈E

wij log p2(i, j) (8)

When we define the second-order proximity measure, the neighbourhood
nodes are considered as contexts for the anchor node. Therefore, we should define
another set of node attribute encoding functions to model the context represen-
tations used for neighbourhood nodes, similarly to the Equations (1), (2) and
(3). The encoder for context nodes is f ′ : V → Rm. The latent representation of
context node i is z′i = N (µ′i,Σ

′
i), where µ′i = f ′µ(f ′(xi)) and Σ′i = f ′Σ(f ′(xi)).

u′
i = f ′(xi) = W′xi + b′ (9)

µ′
i = f ′

µ(ui) = W′
µui + b′

µ (10)

Σ′
i = f ′

Σ(ui) = ELU(W′
Σui + b′

Σ) + 1 (11)

3.5 Model Optimization

The objective function defined in Eq. (6) can be minimized efficiently, but the
objective function in Eq. (8) is a bottleneck as it requires evaluation on the
entire set of nodes for the optimization of one single edge as shown in Eq. (7).
Based on the negative sampling approach proposed in [12] and used in [17], we
sample several negative edges (i.e., defined as N) for each edge in the training
set to optimize the objective function (8). With negative sampling our objective
function O2 in Eq. (8) becomes:

∑
(i,j)∈E

[log σ(−d(zi, z
′
j)) +

N∑
n=1

Evn∼Pn(v) log σ(d(zi, z
′
vn))] (12)

where we draw negative edges from the noise distribution Pn(v) with negative
node probability distribution, Pn(v) ∝ out degree(v)3/4 for v ∈ V. Similarly,
we can optimize objective function O1 in Eq. (6), replacing z′j and z′vn in Eq.
(12) with zj and zvn respectively. We further optimize our training process by
implementing early stopping for training algorithm using a validation set and
assessing the performance at each iteration.

Gaussian Embedding of Large-scale Attributed Graphs 7

Table 1: Statistics of the real-world graphs.

Dataset |V1| |E| D1 #Labels

Cora-ML 2,995 8,416 2,879 7
Cora 19,793 65,311 8,710 70
Citeseer 4,230 5,358 2,701 6
DBLP 17,716 105,734 1,639 4
Pubmed 18,230 79,612 500 3
ACM 115,772 539,910 124,856 -

3.6 Complexity Analysis

Training of GLACE takes O(T × b × (dN + (N + 2) × (Dm + mL + L))) =
O(T × b×N × (d+Dm+mL+ L)), where T is the maximum number of iter-
ations, b is the batch size, d is the maximum node degree, N is the number of
negative samples, D is the attribute vector dimension, m is the intermediate vec-
tor dimension (hidden layer of Node Attribute Encoder), and L is the embedding
dimension. For each edge in the batch, fetching N negative samples takes O(dN)
time. For each of the (N + 2) nodes, i.e., i, j and {vn}vn∈Neg(i), we compute and
update parameters in the Node Attribute Encoder with two levels of transfor-
mations (i.e., fenc, fµ and fΣ) in O(Dm)+O(2mL)+O(2L) = O(Dm+mL+L)
time. Since GLACE initializes node embeddings using encoded node attribute
information, it can achieve faster convergence in optimization (in practice we
can see that GLACE starts to reach optimization point at T = 100. We will
discuss further our method’s scalability over LINE in the experiments section).

4 Experiments

We evaluate our method with state-of-the-art baselines on: link prediction, node
classification, inductive learning and visualization. In addition, we demonstrate
the scalability and inductiveness of our model. Source code for GLACE and the
datasets used will be made available upon publication.

4.1 Datasets

We use six publicly available real-world attributed graphs (Table 1). These are
citation networks in which nodes denote papers and edges represent citation
relations. For each paper, we have TF-IDF vectors of the paper’s abstract as
attributes. Cora-ML is a subset extracted from the Cora citation network. The
larger ACM network is constructed using Aminer data [18].

4.2 Compared Algorithms and Setup

All the experiments were performed on a MacBook Pro laptop with 16GB mem-
ory and a 2.6 GHz Intel Core i7 processor. For each of the following models, we
give maximum of 5 hours as a threshold for training.

8 B. Hettige et al.

Attributes: for evaluation tasks, we use raw node attributes as input fea-
tures instead of node embeddings. node2vec [6]: is a random walk based node
embedding method that maximizes the likelihood of preserving nodes’ neigh-
bourhood using biased random walks starting from each node. Therefore, node2vec
considers only second-order proximity. LINE [17]: is for large-scale non-attributed
graphs and uses first-order and second-order proximity information. Graph-
SAGE [8]: is an inductive learning approach for attributed graphs which learns
an embedding function by sampling and aggregating features of local neigh-
bourhoods of nodes. We use the unsupervised version of GraphSAGE with the
pooling aggregator (which performed best for citation networks according to
[8]). Since we use node class labels in the node classification task, supervised
version of GraphSAGE is not considered in evaluation. Graph2Gauss (G2G)
[1]: produces Gaussian node embeddings using node attributes and graph struc-
ture, which introduces a personalized ranking of nodes based on neighbouring
hops. G2G is applicable to homogeneous graphs with plain/attributed nodes and
(un)directed and unweighted edges.

We also include a non Gaussian representation model to assess the effective-
ness of uncertainty modelling. LACE (without Gaussians): We use a version
of our method in which we represent nodes as vectors in an embedding space
using node attributes and graph structure. GLACE (with Gaussians): This is
the complete version of our method which produces Gaussian distribution rep-
resentations for graph nodes using node attributes and graph structure.

For LINE and GLACE, we consider first-order (1st), second-order (2nd) and
a concatenated representation of first- and second-order proximities (1st + 2nd).
Accordingly, the concatenated representation would have both local and global
information. For all the models, we use 128 as the dimension of the embedding.
Since GLACE learns two vectors for mean and variance respectively, we set
L = 64 to conduct a fair comparison with other methods, so the number of
dimensions learned for each node still remains the same.

4.3 Link Prediction

For all the methods we extract a test set containing 20% randomly selected edges
from the graph and an equal number of non-edges which are not present in the
graph. For all datasets we use the same splits for all the methods. The remain-
ing 80% of the edges are used for training the embedding models. In probability
distribution based embedding methods (G2G and GLACE) we use negative KL
divergence to rank the Gaussian embeddings. For other embedding methods (at-
tributes, node2vec, LINE and LACE), we use dot product similarity of node em-
bedding to ranking. We consider both 1st-order and 2nd-order proximity. We also
consider joint embedding performance by concatenating the resulting embedding
from the two proximity. For LINE, we record the concatenated embedding of the
two proximities, which is identified as the best-performing setting for LINE [17].
AUC and AP scores of link prediction task are shown in Table 2.

A number of important observations can be made from the tables. (1) GLACE
clearly outperforms the state-of-art embedding methods by a significant margin

Gaussian Embedding of Large-scale Attributed Graphs 9

Table 2: Link prediction performance. Experiments not completed within threshold
settings are marked with ”-”.

Algorithm Cora Citeseer DBLP Pubmed ACM
AUC AP AUC AP AUC AP AUC AP AUC AP

Attributes 82.98 77.71 81.53 75.60 75.89 69.56 82.98 77.71 - -
node2vec 87.86 87.19 79.91 82.08 87.03 84.36 88.74 86.58 91.18 91.49
LINE 75.23 77.96 71.20 72.11 80.01 83.09 79.97 82.86 75.32 76.81
GraphSAGE 85.30 84.72 83.33 85.38 89.63 90.12 89.43 90.90 - -
G2G 97.87 98.03 96.28 96.54 96.35 96.79 95.75 95.65 - -

LACE(1st) 96.59 96.66 94.21 94.95 91.91 92.68 83.89 84.26 95.14 95.07
LACE(2nd) 96.83 96.67 94.29 94.61 93.30 93.37 93.72 92.80 94.37 93.91

LACE(1st+2nd) 97.51 97.40 95.35 95.76 93.82 94.14 89.53 89.85 96.01 95.79

GLACE(1st) 98.54 98.46 96.41 96.40 98.48 98.33 97.69 97.42 98.00 97.94
GLACE(2nd) 98.43 98.31 97.22 97.20 98.16 97.95 97.02 96.56 97.94 97.79

GLACE(1st+2nd) 98.60 98.52 98.43 98.37 98.55 98.40 97.82 97.49 98.34 98.24

in both homogeneous and bipartite graphs. The introduction of uncertainty mod-
elling in GLACE improves performance considerably when compared to models
without Gaussian embedding, i.e. node2vec, LINE and LACE. (2) In homo-
geneous graphs, GLACE(1st+2nd), which learns from both the explicit edges in
the graph and neighbourhood similarities, is the best performing model. (3)
G2G shows a very competitive performance to GLACE in smaller graphs (Cora,
DBLP and Pubmed), but it does not scale up for large-scale graphs, ACM and
Stackoverflow. (4) GLACE’s better scalability is also shown, as it is the only
attributed graph embedding model that completes the largest dataset, ACM.

4.4 Multi-class Node Classification

The node embeddings are obtained using the complete node set from the eval-
uated models. Similarly to [17, 1], we randomly sample different percentages of
labeled nodes from the graph for training a logistic regression classifier to predict
class label, and use the rest of the nodes for evaluation. The percentages of nodes
used for training the classifier for node classification task are 10%, 20%, . . . , 90%.
The evaluation metric we report is F1-score, and the results are averaged over 10
trials. We performed this experiment on all the evaluated graphs, and we report
the results for Cora-ML, Citeseer, and DBLP datasets in Figure 1.

Based on the results, it can be seen that GLACE again consistently out-
performs the baseline methods. This is clearly due to uncertainty modelling
of the representations. As can be seen in the figures, there is a clear separa-
tion of node classification performance between the methods that consider node
attributes and the methods that do not. An exception to this observation is
GraphSAGE, which considers attributes but has a considerably poorer perfor-
mance than GLACE, G2G and LR. This can be due to its aggregation process
which magnifies any error. LACE (without Gaussians) is able to outperform some
of the baseline methods, and this is due to the incorporation of node attributes.

10 B. Hettige et al.

0.25

0.35

0.45

0.55

0.65

0.75

0.85

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

m
ic

ro
-F

1

% of labeled nodes

GLACE LACE Attributes node2vec LINE GraphSAGE Graph2Gauss

0.25

0.35

0.45

0.55

0.65

0.75

0.85

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

m
ic

ro
-F

1

% of labeled nodes

(a) Cora-ML

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

m
ic

ro
-F

1

% of labeled nodes

(b) Citeseer

0.40

0.50

0.60

0.70

0.80

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

m
ic

ro
-F

1

% of labeled nodes

(c) DBLP

Fig. 1: Node classification performance. Improvements of GLACE are statistically sig-
nificant for p < 0.01 estimated by a paired t-test.

Table 3: Link prediction performance with inductive learning.

Algorithm Cora-ML Citeseer Pubmed ACM
[hidden %] AUC AP AUC AP AUC AP AUC AP

G2G [10%] 88.83 79.34 87.96 80.39 88.96 77.08 - -
GLACE [10%] 93.07 86.72 90.76 85.03 93.00 84.19 95.05 89.09

G2G [50%] 57.26 34.70 61.71 43.87 51.22 27.39 - -
GLACE [50%] 87.62 74.64 83.69 70.74 92.18 79.99 93.96 85.33

4.5 Inductive Learning

We have evaluated the inductive property by training the models with 10% and
50% nodes hidden from the original graph. Then we evaluate how well the models
can infer embeddings for unseen nodes on the link prediction task, comparing
our model against G2G [1], which also takes attributes into account. Although
GraphSAGE [8] is also an inductive node embedding method, it is not applicable
in this scenario as it requires unseen nodes to be connected to existing nodes.
We perform this task on Cora-ML, Citeseer, Pubmed and ACM graphs. Table
3 summarizes the results. As can be seen from the table, GLACE outperforms
G2G across all the datasets over the two hidden percentage values. It can also be
observed that, GLACE suffers considerably less performance degradation than
G2G when more nodes are hidden (i.e. from 10% to 50%). Since G2G requires
constructing hops and keeping them in memory, we could not run experiments
for G2G (with maximum number of hops to consider > 1) on the ACM dataset,
which also demonstrates the scalability advantage of GLACE.

4.6 Scalability

LINE is a scalable embedding method for plain graphs. In this study we intro-
duced GLACE as an improved scalable embedding method for attributed graphs.
In this section we evaluate the efficiency of our method against LINE, and see
how the introduction of attributes and uncertainty modelling assist GLACE in
converging faster for optimization. We report the validation AUC for link pre-
diction task in ACM dataset against time. The trend is similar in other datasets.
It is worth noting that even though LINE is designed for large-scale graphs, it

Gaussian Embedding of Large-scale Attributed Graphs 11

Fig. 2: GLACE’s faster convergence. Link prediction performance in ACM training.

(a) G2G (b) LACE (c) GLACE

Fig. 3: Visualization of Cora-ML graph (L = 64).

takes a much longer time to converge (Figure 2). This is due to the fact that the
number of iterations required by LINE for convergence is proportional to the
number of edges [17]. On the other hand, taking advantage of node attributes
and uncertainty modelling, GLACE achieves convergence substantially faster.
For instance, in the ACM graph GLACE achieves a significant performance
boost even after 1 minute of training. We evaluate the efficiency of our method
against the large-scale embedding method, LINE.

4.7 Visualization

We evaluate the ability to visualize the Cora-ML citation network. First, each
model learns 128-dimensional node embeddings (L = 64 for Gaussians). Then,
the embeddings are projected to 2 dimensions using t-SNE [14] for 2-D visual-
ization. Figure 3 shows the visualizations from the models which produced the
best layouts. The color of a node represents one of the seven research areas. G2G
produces moderately good clustering, but papers belonging to different areas are
still not clearly separated. LACE and GLACE learn node embeddings that can
clearly separate different classes. GLACE produces the best result in terms of
tightly clustered papers of the same area with clearly visible boundaries.

5 Conclusion

We present GLACE, an unsupervised learning approach to efficiently learn node
embeddings as probability distributions to capture uncertainty of the represen-
tations. GLACE learns from both node attributes and graph structural informa-
tion, and is efficient, scalable and easily generalizable to different types of graphs.

12 B. Hettige et al.

GLACE has been evaluated with respect to several state-of-the-art embedding
methods in different graph analysis tasks, and the results demonstrate that our
method significantly outperforms all the evaluated baselines.

References

1. Bojchevski, A., Günnemann, S.: Deep gaussian embedding of attributed graphs:
Unsupervised inductive learning via ranking. In: ICLR (2018)

2. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS (2013)

3. Cai, H., Zheng, V.W., Chang, K.C.: A comprehensive survey of graph embedding:
Problems, techniques, and applications. IEEE TKDE (2018)

4. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learn-
ing by exponential linear units (elus). CoRR (2015)

5. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and perfor-
mance: A survey. KBS (2018)

6. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: ACM
SIGKDD (2016)

7. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: Meth-
ods and applications. IEEE Data Eng. Bull. (2017)

8. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS (2017)

9. Kipf, T.N., Welling, M.: Variational graph auto-encoders. In: NIPS Workshop on
Bayesian Deep Learning (2016)

10. Liao, L., He, X., Zhang, H., Chua, T.: Attributed social network embedding. IEEE
TKDE (2018)

11. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI (2015)

12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS (2013)

13. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: ACM SIGKDD (2014)

14. Rauber, P.E., Falcão, A.X., Telea, A.C.: Visualizing time-dependent data using
dynamic t-sne. In: Eurographics Conference on Visualization (2016)

15. Ren, X., Liu, J., Yu, X., Khandelwal, U., Gu, Q., Wang, L., Han, J.: Cluscite: effec-
tive citation recommendation by information network-based clustering. In: ACM
SIGKDD (2014)

16. Tang, J., Qu, M., Mei, Q.: PTE: predictive text embedding through large-scale
heterogeneous text networks. In: ACM SIGKDD (2015)

17. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale infor-
mation network embedding. In: WWW (2015)

18. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: Extraction and
mining of academic social networks. In: ACM KDD (2008)

19. Vilnis, L., McCallum, A.: Word representations via gaussian embedding. CoRR
(2014)

20. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: ACM
SIGKDD (2016)

21. Zhu, D., Cui, P., Wang, D., Zhu, W.: Deep variational network embedding in
wasserstein space. In: ACM SIGKDD (2018)

