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Abstract
With the recent explosive increase of digital data,
image recognition and retrieval have become a crit-
ical practical application. Hashing is an effective
solution to this problem, due to its low storage re-
quirement and high query speed. However, most
of past works focus on hashing in a single (source)
domain. Thus, the learned hash function may not
adapt well in a new (target) domain that has a
large distributional difference with the source do-
main. In this paper, we explore an end-to-end do-
main adaptive learning framework that simultane-
ously and precisely generates discriminative hash
codes and classifies target domain images. Our
method encodes images into a semantic common
space, followed by two independent generative ad-
versarial networks aiming at crosswise reconstruct-
ing two domain’s images, reducing domain dispar-
ity and improving alignment in the shared space.
We evaluate our framework on four public bench-
mark datasets, all of which show that our method is
superior to the other state-of-the-art methods on the
tasks of object recognition and image retrieval.

1 Introduction
With the explosive increase of digital data, the efficient re-
trieval (in terms of time) of images and storage (in terms
of space) has become an increasingly important problem.
Hashing-based techniques are a perfect approach to address
this problem due to its high query speed and low storage cost.
The main goal of hashing is to convert high-dimensional fea-
tures into low-dimensional, discriminative and compact bi-
nary codes that preserve semantic information. Many ef-
ficient hash methods are based on deep neural networks.
Most of them focus on single domain, like ITQ [Gong et al.,
2013], BA [Carreira-Perpiñán and Raziperchikolaei, 2015],
and BDNN [Do et al., 2016]. As a result, such hash meth-
ods only exhibit good performance on datasets that have little
distribution difference with the training data.

Addressing this drawback, adaptive or cross-model hash
techniques [Li et al., 2018] have been proposed in recent
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years to deal with the domain shift problem. These methods
are trained on a source dataset and then applied on a different
target dataset, which may have large distributional variances
with the source domain. In [Venkateswara et al., 2017], the
authors first proposed to use deep neural networks to learn
representative hash codes, but they did not consider semantic
information in the target domain and only applied a cross-
entropy loss on the target domain. An end-to-end framework,
DeDAHA [Long et al., 2018a], was proposed to learn do-
main adaptive hash codes by two loss functions that preserve
semantic similarity in hash codes. In [Li et al., 2018], the
authors leveraged two adversarial networks to maximize the
semantic information of the representations between differ-
ent modalities, but their network uses the label information
to bridge the domain gap between two modalities. Although
these methods have achieved high performance, they typi-
cally operate under a supervised setting, assuming the avail-
ability of labeled data in the target domain. However, in the
real world, access to labeled data for the target domain may
be very limited or entirely unavailable. Moreover, it is usually
assumed that the true labels of the target domain are unavail-
able, making adaptive learning a more challenging problem.

Thus, more and more works focus on unsupervised domain
adaption, like [Xie et al., 2018]. The basic idea for domain
adaptive learning is to embed the source and target domains
into a common space so that both datasets in the latent layer
have similar feature distributions. As for unsupervised do-
main adaption, one strategy is to train (under supervision) a
classifier on the labeled source domain and then adapt it to
a new domain. Some works [Hu et al., 2018] focus on how
to assign high-confidence pseudo labels to the target domain
and treat those predicted labels as the ground truth of the tar-
get domain to fine-tune the model. In [Zhang et al., 2018], the
authors proposed a novel sample selection method aiming to
select high-confidence labels. Another strategy is to project
the source and target domain into a common space and reduce
the domain disparity. Maximum Mean Discrepancy (MMD)
has been widely used as a measure of variance between distri-
butions in a reproducing-kernel Hilbert space. Subsequently,
many works use MMD to achieve nonlinear alignment of do-
mains. Deep Domain Confusion [Tzeng et al., 2014] lever-
ages domain confusion loss to learn a representation which is
semantically meaningful and domain invariant.

Recently, generative Adversarial Networks (GAN) [Good-



fellow et al., 2014] was explored to generate new data having
the same distribution with the input data. Later on, many
works started to study how to apply adversarial networks into
adaptive learning. In [Ganin and Lempitsky, 2015], the au-
thors adopted an adversarial training mechanism to address
the domain shift problem. The key component is the training
of a discriminator that judges whether the feature comes from
the source domain or the target domain. Specifically, the fea-
ture learning component tries to fool the discriminator so that
it cannot distinguish the origin of the features. When the dis-
criminator cannot differentiate the origins, it means that the
domain disparity has been reduced to a relatively low level.
The main drawbacks of those methods are that the discrim-
inators can only judge the overall domain’s distribution but
cannot distinguish whether their subspaces in the common
space is invariant or aligned. Inspired by this, we concentrate
on how to leverage the discriminator to distinguish whether
those subspaces are aligned.

In this paper, we propose a new, unsupervised method to
tackle the above deficiencies of existing cross-domain hash
techniques. Our method simultaneously addresses the tasks
of recognition and retrieval in a unified network. In summary,
our main contributions are threefold.

1. We develop a novel end-to-end transfer learning network
which can not only learn the semantic hash codes for
the unlabeled target domain but also predict labels of the
new domain.

2. We employ two identical, but separate generative adver-
sarial networks (GAN) to reduce source and target do-
main difference. Each of them independently generates
data for both domains from the common space in which
label information is preserved.

3. We evaluate our method on four public benchmark
datasets. Our results strongly demonstrate that our
method outperforms the other state-of-the-art unsuper-
vised methods, Duplex, CDAN-M, I2I, etc, in both ob-
ject classification and image retrieval.

2 Methods
Let Ds = {(xsi , ysi )}

ns
i=1 denote the source domain, where

ysi ∈ {1, . . . , N} is the label of xsi . Dt = {xti}
nt
i=1 denotes

the target domain. Note that the target domain Dt is unla-
beled. Our goal is to train a hash function in the source do-
main data and then test it in the target domain.

The high-level architecture of our framework is shown in
Figure 1. Our model consists of three components: (1) one
shared encoder network u = E(x), (2) two independent gen-
erators, denoted as Gs for the source domain and Gt for the
target domain, and (3) two distinct discriminatorsDs andDt,
one for each domain. The shared encoder learns a common
feature space for the two domains. Each generator generates
images in both domains. Each discriminator judges whether
an image comes from the source domain or the target domain.

2.1 Semantic Common Space Learning
As shown in Figure 1, the semantic common space layer
bridges the gap between the encoder and the generators. In

this section, we will split our framework into three parts and
illustrate them in detail.

Supervised Hashing for Source Data
Supervised hashing focuses on how to preserve the label sim-
ilarity information into compact binary codes. In this work,
we choose pairwise loss [Song et al., 2018] as our supervised
hashing function:

Lh = min
WE

(
1

2

∑
sij∈Ss

(
1

d
bi

T bj − sij)
2

) (1)

where WE is the set of parameters of the encoder, bi, bj are
binary codes, Ss ∈ {−1, 1} is the similarity matrix con-
structed from ground-truth labels of the source domain Ds,
and d is the length of hash code. Specifically, if two points
have the same label, their similarity is defined as 1 and other-
wise −1. By optimizing Equation 1, the hash function mini-
mizes the feature distance of images with the same category
but maximizes the distance across different categories. Un-
fortunately, hash codes bi, bj are discrete and cannot be min-
imized directly. So we relax the hashing function into a con-
tinuous closed interval [−1, 1] and use ui to approximate the
binary code bi, where ui is the output of the last layer of net-
work. We use tanh(·) as activation function to compute ui.
The updated loss function is given in Equation 2:

Lh =min
WE

(
1

2

∑
sij∈Ss

(
1

d
uTi uj − sij)

2

+

υ
1

2

∑
(ui − sign(ui))2)

(2)

where the second term is the relaxation term aiming at reduc-
ing quantization error. In our experiments, we set a very small
number for υ.

Semantic Centroid Alignment
As noted in the introduction, the supervised hash loss learned
in the source domain is inapplicable to the target domain in
cross-domain hashing. To solve this problem, we proposed
a semantic centroid alignment loss to handle it. Especially,
through our semantic centroid alignment loss, we force the
target domain to have a cluster center distribution similar to
that of the source domain.

In fact, we can view Equation 2 as a clustering process:
if two images have the same class label, they should have a
small hash distance (i.e. Hamming distance ), otherwise they
should have a large hash distance. Consequently, a small hash
distance means that their features should belong to the same
cluster in the feature space whereas a large hash distance im-
plies the they should belong in different clusters. Thus, if the
two domains have similar cluster center distributions in the
learned common semantic space, the hash function trained on
the source domain should be applicable on the target domain.
We adopt the K-means algorithm as the clustering algorithm
on the two domains. The formulation is showing as follows:

Ls = min
WE

(

N∑
i=1

ϕ(
1

mi

∑
ys=i

xs,
1

ki

∑
yt̃=i

xt)) (3)
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Figure 1: The overview of our framework, which is consisted of five networks: encoder, two independent generators and two distinct
discriminators. Two generators are responsible for reconstructing two domain’s data and discriminators aim at recogizing their labels.

where N is the number of classes and mi (resp. ki) denotes
the number of samples in the same cluster in the source (resp.
ki) domain. ϕ(·, ·) is the function that measures the dis-
tance of different centers. In this work, we leverage Eu-
clidean distance to define the distance between centers, i.e.
ϕ(xi, xj) = ‖xi − xj‖2. yt̃ denotes the pseudo label of the
target domain. To obtain highly precise pseudo labels, we set
a threshold to select the target label, as shown below:

yt̃ =

{
argmax(p(xt)) if p(xt) > T
−1 otherwise (4)

where p(xt) is the probability that xt belongs to each cate-
gory and T is the threshold.

Label Prediction
To predict pseudo labels, a classifier C is learned on the com-
mon space layer u with the following cross-entropy loss:

Lc = min
WE

(−
ns∑
i=1

ysi log(p(x
s
i ))− ε

nt∑
i=1

ỹti log(p(x
t
i))) (5)

where ys is the labels of the source domain and ỹt is the
pseudo label of target domain, obtained via Equation 4. It is
unavoidable that a small number of pseudo labels are wrong.
Thus, we add a weight parameter ε to balance the impact of
pseudo labels.

2.2 Cross-domain Semantic Reconstruction
As showing in Figure 1, our model consists of two indepen-
dent generators, denoted Gs and Gt, aiming at reducing the
domain disparity in the common space. Specifically,Gs is re-
sponsible for reconstructing source domain images from the
common space u while Gt reconstructs target domain images
also from u. The intuitive reconstruction directions are for-

mulated as follows:

x̃s = Gs(us)

x̃t = Gt(ut)
(6)

where u = E(x) denotes the common space feature. To re-
construct vivid images, we use the l1 pixel-wise loss to con-
strain the original images and reproduced images, as follows:

L1 = min
WE ,WG

∑
xs∈Ds

‖xs − x̃s‖+
∑

xt∈Dt

∥∥xt − x̃t∥∥ (7)

where WG denotes the parameters of the two generators.
Note that the two generators do not share parameters, and
WG is a notational convenience.

However, the two reconstruction directions alone cannot
benefit the domain information transfer, and it is necessary to
build some cross-domain relationships between the two do-
mains. Thus, we let each generator generate the other do-
main’s data, as follows:

x̃ts = Gs(ut)

x̃st = Gt(us)
(8)

Intuitively, if the pairs of x̃st and x̃t, x̃ts and x̃s are recon-
structed well, the learned common space adapts well on both
domains. To illustrate this, taking the pair of x̃st and x̃t as
an example, when they are indistinguishable, the domain dis-
parity on the common space is small.On the other hand, if we
remove the generator Gs, it will render that the target domain
space is a subspace of the source domain because of asym-
metric training with only one reconstructing path [Ghifary et
al., 2016]. In the training stage, both generators are optimized
adversarially until they find the best common space suitable
for both domains.



Semantic Discriminators
It is worth noting that our model not only reconstructs the op-
ponent domain’s images but also ensures that the reproduced
image has the same class label with the original input image.
Specifically, following previous work [Hu et al., 2018], our
discriminators are designed such that it distinguishes the fake
and the real, and at the same time predicts the label for real
images. Thus, the output of a discriminator hasN+1 distinct
values, of which N values describe the image’s labels and
the last value defines whether the image is reconstructed or
original. As in GAN [Goodfellow et al., 2014], we can treat
the GAN training stage as the generators and discriminators
playing a minimax game, where the generators try to fool the
discriminators by generating realistic data while the discrim-
inators try to distinguish whether the input data is original or
reconstructed. The original GAN loss is formulated as:

La = min
WG

max
WD

(log(D(x)) + log(1−D(x̃))) (9)

where WD denotes the parameters of the two (separate) dis-
criminators and WG is the parameters of the two generators.

In our work, the discriminators need to not only differen-
tiate fake data but also recognize the label of the real data.
Thus, we augment the adversarial loss as follows:

La = min
WG

max
WD

(ys log(D(xs)) + ỹt log(D(xt))+

yf log(D(x̃st)) + yf log(D(x̃ts)))
(10)

where yf denotes the fake label and WG/WD are the param-
eters of the generators/discriminators.

2.3 Overall Objective Function
In summary, the overall loss function is rewritten as follows:

L = min
WE ,WG,WD

(Lc + La + αLh + βLs + χL1) (11)

where α, β and χ are balance weights. We use stochastic gra-
dient descent (SGD) to optimize the parameters. The update
rules are formulated as follows, where η is the learning rate:

WE ←WE − η × (
∂Lc

∂WE
+

∂La

∂WG
× ∂WG

∂WE
+ α

∂Ls

∂WE

+ β
∂Lh

∂WE
+ χ

∂L1

∂WG
× ∂WG

∂WE
)

(12)

WG ←WG − η × (
∂La

∂WG
+ χ

∂L1

∂WG
) (13)

WD ←WD − η × (
∂La

∂WD
) (14)

As Ls is calculated by mini-batches, it is reasonable that
the larger the mini-batch size is, the more accurate cluster
centroids can be obtained. Moreover, the batch size must be
larger than the number of classes (N ). In our experiment, we
set the batch size as 10 times bigger of the number of labels.

2.4 Differences from Previous Works
Difference from Duplex [Hu et al., 2018]. Both Duplex and
our framework adapt the generative adversarial networks to
learn the common space to reduce domain disparity. How-
ever, Duplex uses only one generator to reconstruct cross-
domain images, which requires it to add extra condition in-
formation to the common space, making it hard to align the
two domains. In this work, on the other hand, we employ
two separate generators, both are able to reconstruct cross-
domain images. Moreover, we do not require any additional
information for the common space, which allows the latent
representations on the two domains to have consistent distri-
butions.
Difference from MSTN [Xie et al., 2018] and Co-GAN [Liu
and Tuzel, 2016]. Both of MSTN and Co-GAN use discrim-
inators to judge the origin of domain representations. How-
ever, the discriminators do not recognize the label of images.
In contrast, our discriminators can predict class labels of im-
ages, hence are able to preserve semantic information in the
common feature space, which makes the learned space more
discriminative.
Difference from GTA [Sankaranarayanan et al., 2018]. Al-
though both GTA and our framework adopts the generative
adversarial network to reconstruct images from the common
space, GTA only uses one direction to reconstruct images:
only from target to source. In contrast, our framework em-
ploys the cross-domain reconstruction strategy (both source
to target and target to source), which avoids the situation that
one subspace became a joint subspace affine to the opposed
domain.

3 Experiments
We evaluate our model on the tasks of object recognition and
image retrieval. Specifically, the experiments are conducted
to answer the following research questions:

RQ1: Is our method superior to the state-of-the-art domain
adaptive methods?

RQ2: How does each part of our model affect the perfor-
mance of object recognition and image retrieval?

RQ3: How well does our method learn the common space
representation?

3.1 Datasets
We test our method on three public digits datasets:
MNIST (M) [LeCun et al., 1998], SVHN (S) [Netzer et al.,
2011], and USPS (U) [Denker et al., 1989]. Specifically, the
three datasets have the same 10 categories but have various
types. MNIST contains of 60,000 training and 10,000 test-
ing images, and USPS contains 7,291 training and 2,007 test-
ing images. SVHN, obtained from house numbers in Google
Street View images, has 73,257 training and 26,032 testing
images.

Additionally, we also evaluate our method on the standard
benchmark dataset Office-31 [Saenko et al., 2010], which has
three types of images: Amazon (A), Webcam (W) and DSLR
(D). Office-31 in total has 4,110 images, of which 2,817 in
Amazon, 795 in Webcam, and 498 in DSLR.



For the digits datasets, we select three directions of domain
shift: SVHN → MNIST, MNIST → USPS, and USPS →
MNIST. We choose four directions of domain shifts for the
Office-31 dataset: Amazon → Webcam, Webcam → Ama-
zon, Amazon→ DSLR, and DSLR→ Amazon. We discard
the directions of Webcam → DSLR and DSLR → Webcam
because the images are highly similar. All the dataset setting
are the same as [Hu et al., 2018].

3.2 Implementation Details
The digits datasets contain simple images with the tiny size
of 32 × 32. For SVHN→ MNIST, we use the network [Hu
et al., 2018], which is consisted of four convolutional lay-
ers without fully connected layers. Similarly, the generator
network is a symmetrical network also consisting of 4 decon-
volutional layers 1. As for USPS→ MNIST and MNIST→
USPS, we use the LeNet[LeCun et al., 1998]. The Office-
31 dataset contains more complex images that are harder to
reconstruct. Thus we choose Alexnet as the encoder network
and reconstruct the fc6 feature layer instead of reconstructing
the original images. In the training stage of Office-31, we use
the model pre-trained on ImageNet to initialize our model. As
for the digits datasets, we divide the training procedure into
several stages. Specifically, we first use the source domain to
pre-train the encoder network and then use it to initialize the
first stage of the encoder network. After that, every several
training epochs we use the last-stage encoder’s parameters to
initialize the next-stage encoder network, while other compo-
nents are initialized with random parameters. With regards
to training semantic centroid alignment, we do not precisely
calculate the centers of all training samples, which is time-
consuming. Instead, we calculate the centers of mini-batches
to approximate the global centers. We set the batch size as
200 for SVHN→MNIST and 100 for MNIST→ USPS and
USPS → MNIST. Plus, the length of the hash code is set as
64 bit.

3.3 Comparison with the State-of-the-art Domain
Adaptive Hashing Methods (RQ1)

In this section, we will compare our method with state-of-
the-art works on both tasks: object recognition and image
retrieval.

Object Recognition: we evaluate our method on both
datasets: digits and Office-31. For the Office-31, we com-
pare with Duplex [Hu et al., 2018], MSTN[Xie et al., 2018],
DRCN [Ghifary et al., 2016], DAN [Long et al., 2015],
CDAN [Long et al., 2018b], I2I [Murez et al., 2018], and
ADDA [Tzeng et al., 2017]. With regard to digits datasets,
we add other two methods: Co-GAN [Liu and Tuzel, 2016]
and CyCADA [Hoffman et al., 2018].

Table 1 shows the object recognition results on the digits
dataset. As can be seen, our method is superior to all the
other methods on average accuracy. For the domain shift of
S→M, our result outperforms the current best method, Du-
plex, by 3.1%. Similarly, our result on M→U is also the best,
0.3% higher than CDAN-M. As for U→M, our result is 1.0%
lower than Duplex. Overall, the average performance of our

1Our code is released at https://github.com/htlsn/igan.

model is the highest and surpasses the current best model Du-
plex by 0.93%. Table 2 shows the object recognition results
of the Office-31 dataset. For A → W, our method is lower
by 1% than MSTN, but on the other three domain shifts our
method outperforms the best method MSTN by 2.7%, 2.2%
and 2.0%. Plus, the average performance is also the highest.

Image retrieval. We also test our method on the task of
image retrieval. We compare our method with other unsu-
pervised domain adaptive hash methods: ITQ [Gong et al.,
2013], BA [Carreira-Perpiñán and Raziperchikolaei, 2015],
DAH [Venkateswara et al., 2017], and BDNN [Do et al.,
2016]. In addition, we also test our method against the per-
formance upper bound Supervised Hashing [Li et al., 2018],
denoted SuH. Table 3 shows the image retrieval results on the
Office-31 dataset, in terms of mean average precision (MAP).
As stated in Section 3.1, we choose three pairs of domains
for image retrieval: AmazontoWebcam , Webcam→Amazon
and Amazon→Dslr, following [Venkateswara et al., 2017].
As can be seen from Table 3, for every retrieval pair, our
method is superior to the other unsupervised hashing meth-
ods, with an improvement of about 3.0%, 2.1%, and 2.5%
respectively. However, in comparison to SuH, there is still a
huge gap between the supervised hash method and the super-
vised method.

Table 1: Object recognition accuracies (%) on the digits datasets.

Methods S→M M→U U→M Avg

CyCADA 90.4 95.6 96.5 94.17
Duplex 92.5 96.0 98.8 95.80
MSTN 91.7 92.9 - 92.30
CDAN-M 89.2 96.5 97.1 94.30
ADDA 76.0 89.4 90.1 85.17
Co-GAN - 91.2 89.1 90.15
DRCN 82.0 91.8 73.7 82.50

Ours 95.6 96.8 97.8 96.73

Table 2: Object recognition accuracies (%) on the Office-31
datasets.

Methods A→W A→D W→A D→A Avg

Duplex 73.2 74.1 59.1 61.5 66.96
MSTN 80.5 74.5 60.0 62.5 69.38
I2I 75.3 71.1 52.1 50.1 62.15
CDAN-M 78.3 76.3 57.3 57.3 67.30
ADDA 73.5 71.6 53.5 54.6 63.30

Ours 79.5 77.2 62.2 64.5 70.85

3.4 Ablation Study (RQ2)
As presented in the previous section, our method consists of
several loss functions: label prediction loss Lc, hash loss Lh,
semantic centroid alignment loss Ls, adversarial loss La, and
pixel-wise reconstruction loss L1. In this section, we will test
the effect of each component on the performance.

Table 4 shows the results of object recognition on the dig-
its datasets, where the above loss functions are added one at a



Table 3: MAP (mean average precision) 64 bits(%) on the Office-31
datasets and Office home. Note that SuH is a supervised hashing
method that represents the performance upper bound.

Methods W→A A→W A→D Avg

NoDA 32.4 51.1 51.2 44.90
ITQ 46.5 65.2 64.3 58.67
BDNN 49.1 65.6 66.8 60.50
BA 36.7 48.0 49.7 44.80
DAH 58.2 71.7 72.1 67.33

Ours 61.2 73.8 74.6 69.87

SuH 88.1 91.6 92.7 90.80

time. With only the Lc component in our baseline model, the
average accuracy is 69.17. Next, we add the centroid align-
ment loss Ls. Obviously, the centroid alignment loss has a
positive effect on the results with about 17.33 improvement.
Similarly, adding the hashing loss Lh results in a further im-
provement of 0.9 over the centroid alignment loss.

With the addition of the adversarial loss La produced by
our intersectant generators, the performance is improved by
8.47, which demonstrates that the proposed cross-domain re-
construction loss is effective.

Finally, we test the pixel-wise loss L1. As can be seen
from Table 4, L1 loss further improves the performance by
0.86. The possible reason for L1 is that it can constrain the
reconstructed images to look similar to the original images,
which helps improve the judgement of the discriminators.

Briefly, from Table 4, we can obtain the following two con-
clusions. (1) Each of the loss function contributes positively
to recognition performance, and their combination achieves
the best results. (2) The adversarial component La is the key
part of our framework. Specifically, when La is added, about
8.47 improvement is obtained compared without it. Thus, the
intersectant reconstruction has a significant effect on reducing
domain disparity.

Table 4: Ablation study results of object recognition accuracy on the
digits datasets.

Methods S→M M→U U→M Avg

Lc 60.2 85.5 61.8 69.17
Lc+Ls 81.2 89.5 88.8 86.50
Lc+Ls+Lh 82.4 90.3 89.5 87.40
Lc+Ls+Lh+La 94.4 96.1 97.2 95.87
Lc+Ls+Lh+La+L1 95.6 96.8 97.8 96.73

3.5 Common Space Feature Visualization (RQ3)
We resort to visualization to assess the quality of the com-
mon space representation learned by our method. Figure 2
shows the visualization of the feature representation learned
by our method, with feature dimensions reduced by t-SNE
from 64 to 2. Figure 2 (a) shows all the 795 points of We-
bcam, color-coded by the 31 classes, that are generated by
only training on the Amazon source domain. Before training
by our method, it is easy to see that the points are scattered

everywhere, and the points belonging to the same class (same
color) do not cluster around a centroid. In contrast, after we
add several loss functions 11, the learned features become
discriminative. I.e., points of the same class cluster in the
same centroid, and class centroids have long distance, as can
be seen from Figure 2 (b). The same observation can be made
for the Webcam→Amazon direction as well, as shown in Fig-
ure 2 (c) and (d).

(a) Amazon→Webcam before
adaptive learning.

(b) Amazon→Webcam after
trained by our method.

(c) Webcam→Amazon before
adaptive learning.

(d) Webcam→Amazon after
trained by our method.

Figure 2: A visualization of the target domain features learned with
and without domain adaption, with feature dimensions reduced by t-
SNE from 64 to 2. For Amazon→Webcam, (a) is the feature repre-
sentation before adaptive learning, and (b) is trained by our method.
Similarly, (c) is before adaptive learning and (d) is trained by our
method, for Webcam→Amazon.

4 Conclusion
Cross-domain hashing allows hash functions learned on one
domain to be applied effectively to a new domain without
supervision. In this paper, we propose an end-to-end cross-
domain hashing framework based on intersectant generative
adversarial networks. Our framework learns representations
for both domains in a common space and combines five com-
plementary loss functions: label prediction loss, supervised
hash loss, semantic centroid alignment loss, cross-domain re-
construction loss, and pixel-wise loss. All of them help im-
prove learning the common space and reduce the disparity
between the two domains. Finally, several comparison exper-
iments show that our method is superior to the other state-
of-the-art methods in cross-domain hashing on a number of
benchmark datasets.



Acknowlegements
References
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