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Abstract—Generating photo-realistic images from labels (e.g., semantic labels or sketch labels) is muchmore challenging than the

general image-to-image translation task, mainly due to the large differences between extremely sparse labels and detail rich images.

We propose a general framework Lab2Pix to tackle this issue from two aspects: 1) how to extract useful information from the input; and

2) how to efficiently bridge the gap between the labels and images. Specifically, we propose a Double-Guided Normalization (DG-Norm)

to use the input label for semantically guiding activations in normalization layers, and use global featureswith large receptive fields

for differentiating the activationswithin the same semantic region. To efficiently generate the images, we further propose Label Guided

Spatial Co-Attention (LSCA) to encourage the learning of incremental visual information using limitedmodel parameterswhile storing the

well-synthesized part in lower-level features. Accordingly, Hierarchical Perceptual Discriminatorswith ForegroundEnhancementMasks are

proposed to toughly work against the generator thus encouraging realistic image generation and a sharp enhancement loss is further

introduced for high-quality sharp image generation.We instantiate our Lab2Pix for the taskof label-to-image in both unpaired (Lab2Pix-V1)

and paired settings (Lab2Pix-V2). Extensive experiments conducted onvarious datasets demonstrate that our method significantly

outperforms state-of-the-art methods quantitatively and qualitatively in both settings.

Index Terms—Generative Adversarial Networks (GANs), label-to-image synthesis, photo-realistic image generation

Ç

1 INTRODUCTION

GENERATING photo-realistic images from labels (e.g.,
semantic labels or sketch labels), which we refer to as

label-to-image, or Lab2Pix hereinafter, can be considered as
a subtask of image-to-image translation, which is valuable to
many applications including datasets synthesis and image
processing. Recently, great progress [1], [2], [3], [4], [5], [6] on
image synthesis has been made especially with the advance
of Generative Adversarial Networks (GANs) [7]. Label-to-
image synthesis is one of the most challenging problems
among all types of image synthesis tasks, due to the complex-
ity of scenes that contain multiple objects of different

categories. Thus, in order to synthesize high-quality images,
it is necessary to focus on both global shapes as well as
detailed textures for each object.

Both paired and unpaired data have been used to train
Lab2Pix models. Recent paired-data methods [1], [3], [5], [8]
and unpaired-data methods [4], [9], [10], [11], [12] have
achieved remarkable abilities of generating realistic images
from simple scenes. However, for more challenging multi-
object or complex-objects scenarios, existing architectures
still exhibit unsatisfactory performance. For instance, some
state-of-the-art works [3], [4] are unable to synthesize details
well on objects with complex textures, while some
others [12], [13] require significant computational resources
to portray details of a single object.

As pioneering general image translation frameworks,
the paired-data method Pix2Pix [8] and unpaired-data
method CycleGAN [10] are the first to translate labels to
real images. Some works [5], [6], [9], [14] leverage the
advantage of multi-stage learning to stabilize the training
process and improve the quality of synthesized samples.
However, such multi-stack architectures result in a tremen-
dous increase in the number of parameters and training
time. Different from the multi-stage design, some works [4],
[11] propose to add extra modules (e.g., dilated convolu-
tion) to improve performance. These methods show notice-
able improvements on the background but inappreciable
effects on foreground objects. Besides, inspired by the idea
of disentanglement [15], some works [12], [13] propose to
encode a whole image as two one-dimension latent code
parts (i.e. content and style). Since the code length limits
the expression of detailed textures for multi objects, the
quality of the synthesized details is poor in complex multi-
object scenes.
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Label-to-image synthesis is a challenging task due to two
major reasons. (1) Compared with other image translation
tasks, Lab2Pix suffers from the tremendous differences
between the input labels and output images, which has not
been specifically considered by existing methods. The input
labels only contain pixel-level category attributeswhile the out-
put images are semantically rich. (2) The sparse information in
input labels makes it hard to extract useful features for guiding
generation and constraining the synthesized images. For exam-
ple, in addition to local pixel features, global contents for all
instances should be considered for generation. Previous works
usually consider this task as a normal image-to-image transla-
tion, and barely consider the special attributes in the input label
map, the output raw image, and the huge gap between them.
Thus, they often achieve incomplete generation and obtain
resultswith blank holes and fewdetails.

In this paper, we focus on two aspects in the label-to-image
task. First, to comprehensively extract features from input label
maps with sparse information, we propose Double-Guided Nor-
malization (DG-norm) and Label Guided Spatial Co-attention
(LSCA) for the image generator. Specifically, DG-norm pro-
vides extra global information (e.g., the entire shape of an object
and its neighboring instances) in guiding image generation
compared with existing methods that only consider pixel-level
attributes. LSCA prevents the network from losing well-

synthesized parts under limited model parameters with the
guidance of label maps. Second, to constrain output images
thus encouraging photo-realistic image generation from label
maps, we design a novel and powerful Hierarchical Perceptual
Discriminator (HPD) and a general Sharp Enhancement Loss. In
detail, Hierarchical Perceptual Discriminators are designed in
different structures for different scale images, to discriminate
objects with both low-level visual concepts and high-level
semantic information. Comparedwith existing ones, HPD pro-
vides hierarchical discrimination to fully consider different
objects in complex scenes described by output images with the
help of auxiliary perceptual features. Furthermore, we take
advantage of data itself to make blurry samples, and add them
as negative samples into the adversarial training to boost clear
image generation which we term as the sharp enhancement
loss. Additionally, we propose a novel Foreground Enhancement
Mask in adversarial loss calculation to focus more on the chal-
lenging foreground generation with the label guidance. Differ-
ent from existing methods, we fully consider the sparse
information contained in the input label and the abundant
detail described in the output image.We propose several mod-
ules and loss functions to boost the complete feature extraction
and expression. Meanwhile, we introduce simple fusion mod-
ules to maintain the large-span translation with the limited
model.

Fig. 1. Some synthesized examples of our Lab2Pix-V1 (above the dash) and Lab2Pix-V2 (below the dash). Our Lab2Pixs take label maps as the
inputs and predicts the corresponding realistic images with unpaired-data and paired-data learning. The task is extremely hard since the generated
samples are supposed to match the input label maps and keep realistic in complex scenes at the same time. The generated samples from our model
are colorful and photo-realistic and contain detailed textures.
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Based on the above components, we propose a unified
GAN framework Lab2Pix, illustrated in Fig. 2, with two ver-
sions (Lab2Pix-V1 [16] in Fig. 7 and Lab2Pix-V2 in Fig. 8) for
the challenging Lab2Pix task in the unpaired-data and the
paired-data settings, respectively. Both generators produce
multi-scale images in one forward pass and each image is
distinguished by one independent discriminator. To stabi-
lize the unpaired-data training, we further propose Image
Consistency Loss and Cycle Segmentation Loss. To confirm our
model’s ability of generating high-resolution images, we
build Lab2Pix-V2-H to synthesize double-scale samples of
basic Lab2Pix-V1 and Lab2Pix-V2.

The major contributions of this paper can be summarized
as follows:

1) To extract useful information from sparse labels, we
propose a Double-Guided Normalization (DG-
Norm), where the input label is utilized for semanti-
cally guiding generation. The global feature with
large receptive fields is added to differentiate the
activations within the same semantic region.

2) To efficiently generate the images using limited
model parameters, we propose a Label Guided Spa-
tial Co-Attention (LSCA) to encourage the incremen-
tal learning of visual information while storing the
well synthesized part in lower-level features.

3) To encourage realistic and clear image generation
with abundant details, we equip our model with a set
of novel hierarchical perceptual discriminators and
constraints including sharpness enhancement loss,
image consistency loss and cycle segmentation loss.

4) We instantiate our Lab2Pix framework for the task of
label-to-imagewith both unpaired and paired settings.
Extensive experiments on six benchmark datasets
demonstrate that both our models achieve state-of-
the-art results both quantitatively and qualitatively.

Our source code and models are available at https://
github.com/RoseRollZhu/Lab2Pix.

2 RELATED WORK

2.1 Conditional GANs

Generative Adversarial Networks (GANs) [7] are proposed
to synthesize various data. In general, they can be divided
into conditional and unconditional types. Conditional
GANs provide approaches for users to control synthesized
data with some additional information. For instance, catego-
ries [17], [18], sketches [19], [20], descriptions [21], [22],
bounding boxes [23], [24] and special attribute codes [25],
[26] have all been used as the input guidance.

Most of the earlier studies on conditional GANs are
based on paired-data learning. Later architectures were
prposed [27], [28], [29], [30] to support unpaired-data learn-
ing. Compared with the unconditional setting, conditional
GANs rely more on paired data for training. The accurate
mapping functions between condition values and generated
results are difficult to learn if corresponding samples are
not given. Because of this, with the same or similar struc-
tures, models with paired learning usually perform much
better (e.g., [11]). In general, the performances of paired-
data learning are much better than unpaired-data ones. In
this work, we employ the conditional GAN model trained
with both paired and unpaired data.

2.2 Image Synthesis From Label

Image-to-image translation, usually tackled by GANs [7], is
to synthesize images in the target domain from the source
domain (e.g., image style translation [31], [32], object trans-
lation [33], [34], image super-resolution [35], [36]). Label-to-
mage synthesis, a subtask of image-to-image translation,
limits the source domain to label maps (e.g., semantic label
maps or sketch label maps) and the target domain to real-
world images. Totally, this task can be divided into paired-
data and unpaired-data training settings.

In the paired-data training setting, the model are fed with
label maps and corresponding images for training. The pio-
neering work Pix2Pix [8] directly applies U-Net [37] to gen-
erate the images. CRN [1] suggests to synthesize the images
from low resolution to high resolution progressively, which
may stabilize the training process and improve image qual-
ity. Pix2PixHD [5] seeks to address super high resolution
image generation by splitting the task to multi separate
stages. The state-of-the-art method SPADE [3] proposes the
spatial adaptive normalization for labels to guide genera-
tion without erasing useful information. Inspired by
SPADE [3], many works have been proposed. CC-FPSE [38]
design a conditional convolution and semantics-embedding
strategy for label maps to better guide the generation and
discrimination. TSIT [39] adopts a versatile two-stream
framework with multi-scale feature normalizations to inte-
grate the content and style of generated images. Compared
with SPADE only focusing on local information, we intro-
duce a double-guided normalization to fully consider the
local and global features of label maps for complex objects.

For the more challenging unpaired-data training setting,
unpaired label maps and images are used for training.
CycleGAN [10] first proposes a cyclic architecture to sup-
port this task. Most works follow the basic cyclic structure
to train with unpaired data. SCAN [9] uses a two-stack
architecture to synthesize high-resolution images progres-
sively, where the first stack processes data in half scale, and
the parameters of each stack are updated iteratively.
Inspired by the segmentation network, SPAP [4] designs a
coarse-to-fine fusion structure with dilated convolutions.
They use convolutions with different dilation sizes to cap-
ture multi-scale information of the image. MUNIT [12] enco-
des image information as style and content parts and
exchanges these two parts to synthesize images in different
styles.

Different from prior works, which usually design the
architecture for the general image-to-image translation, our

Fig. 2. Illustration of our proposed unified Lab2Pix (including Lab2Pix-V1
and Lab2Pix-V2) framework. The generator takes a label map to synthe-
size multi-scale images, and independent discriminators give hierarchi-
cal discriminative results for each image based on the foreground map
extracted from the label map.
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Lab2Pix models consider the specific properties that make
label-to-image more challenging, i.e., the significant differ-
ences between the input labels and output images.

3 PROPOSED METHOD

Given a label map M (i.e., a semantic map or a sketch map),
we aim to synthesize a high-resolution photo-realistic image
with an end-to-end label-to-image network. Moreover, our
design is supposed to support both the unpaired-data and
paired-data training, whichmeans the real imageY provided
in each training pair shares the same or different layout with
the providedM. Considering the challenging label-to-image
task, we can conclude that the input labels only contain
pixel-level category attributes and no semantic information,
while the output images are supposed to be aligned with the
input labels, photo-realistic and semantically rich. To gener-
ate high-quality images under limited model parameters,
the network is supposed to dig information from input label
maps as much as possible and bridge the gap between the
sparse labels and detailed rich images. Thus, we propose a
few modules in generators to process the label maps, a set of
strong discriminators and extra loss functions to encourage
realistic image generation, which compose a unified Lab2Pix
framework as illustrated in Fig. 2.

3.1 Extract Information From Sparse Label

We propose three modules to extract information from
sparse labels for comprehensive label processing. The three
modules address the challenging label processing in differ-
ent ways and can coexist in one model.

3.1.1 Adaptive Label Encoder

To generate images, we are supposed to encode labels at the
front stage of the network. Given a semantic label, each pixel
contains a semantic category information. In contrast, a
sketch label contains few information and its informative
pixels are extremely sparse. Therefore, we design two label
encoders: the semantic label encoder and the sketch label
encoder to adaptively handle semantic and sketch informa-
tion. Their detailed structure is shown in Fig. 3. Both label
encoders take a label mapM and a randomly generated stan-
dard Gaussian noise z as input. In this task, we add a fully
connected layer to z and then reshape it to a 3-dimensional

noise feature fz. Then, we combine the noise feature fz with a
label feature. Specifically, for the sketch label encoder, we
design a sketch encoder with multiple convolutions to
extract the overall feature flsk of the sketch labels. The strides
are set as 2 for expanding the receptive field of each pixel.
Finally, we concatenate fz with flsk as the output of the sketch
label encoder. For the semantic label encoder, we use two
stacked generative residual blocks (GenResBlk) to encode
the input label map and fuse it with the noise information.
Specifically, we input fz and M to the first GenResBlk and
obtain a coarse feature, as illustrated in Fig. 3. Then, we inject
the coarse feature andM to the secondGenResBlk for further
encoding and take the result as the output of the semantic
label encoder. Here, no extra encoder is required, since every
pixel inM provides rich guiding information.

3.1.2 Generative Residual Blocks (GenResBlk)

GenResBlk is the conditional residual block that synthesizes
image features at a specific scale along with the whole gen-
eration. Inspired by the previous work [3], we adopt the
normalization layer for the label to guide the image synthe-
sis described as a function Grb. The entire process of Gen-
ResBlk can be described as follows:

dtþ1 ¼ Gt
rbðdt;MÞ; (1)

where dt is the input of the tth GenResBlk and dtþ1 is
upscaled from dt by a factor of 2. We find that SPADE [3]
only processes the label maps with one-layer embeddings
(only two layers of 3� 3 convolutions) as the input. Thus,
the guidance information only contains pixel-level category
attributes. This design works fine for objects with similar
textures in different patches (e.g., sky, road, grass), but gives
unsatisfactory performances in instances with complex tex-
tures (e.g., vehicle, animals). Each patch in these instances
contains different sub-objects, which means the generator
needs to locate each body part from the global shape for
high-quality synthesis.

The category information is not enough for high-quality
image synthesis. If the global information (e.g., global
shapes, global positions) is ignored in the guidance, the gen-
erated objects in the scenes may not be reasonable even
though some patches are well synthesized. Thus, we design
a global encoder to provide an extra feature for generation.
The encoder consists of several convolutions with stride 2.
We only want to obtain the global feature, so the global
encoder only gives one final result. The process can be
expressed as follows:

H ¼ EglobalðMÞ: (2)

Then, unlike baseline GenResBlkGrb, with the help of the
global encoder, we add global information as an extra con-
dition to guide generation in GenResBlks. We design the
novel Double-Guided Normalization (DG-Norm), which is
shown in Fig. 4. Let Ei denote the activation before normali-
zation. In DG-Norm, Ei will go through a batch normaliza-
tion BN , which can be expressed as follows:

BNðEiÞ ¼ gBN

Ei � mðEiÞ
sðEiÞ

� �
þ bBN: (3)

Fig. 3. The structure of our Adaptive Label Encoder. It separately
encodes the sketch and semantic label maps according to their
characteristics.
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where gBN and bBN are learned parameters in the batch nor-
malization. mðEiÞ and sðEiÞ can be calculated as follows:

mðEiÞc ¼
1

NHiWi

X
n;h;w

Ei
nchw; sðEiÞc

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NHiWi

X
n;h;w

ðEi
nchwÞ2 � mðEiÞc

s
; (4)

where Hi and Wi are the height and width of Ei. Then, we
can de-normalize the feature with new parameter, the func-
tion can be expressed as:

DGðEiÞ ¼ gDG � ðBNðEiÞ þ 1Þ þ bDG; (5)

where gDG and bDG can be obtained as in Fig. 4. We resize
the label map and global feature to the same size as the
input Ei. We fuse the guidance information by element-wise
addition. The total process of proposed new GenResBlk
Grb� containing DG-Norm can be described as follows:

d0
tþ1 ¼ Gt

rb�ðd0
t;M;HÞ; (6)

where d0
t is the input of the tth GenResBlk, and d0

tþ1 is
upscaled from d0

t by a factor of 2.

3.1.3 Label Guided Spatial Co-Attention (LSCA)

As the resolution goes higher at the back stage of genera-
tion, the classical GenResBlk, which is equipped with con-
volution and normalization layers to process data in low
dimension, may not be able to maintain all object features.
Objects features include lower-level visual features like tex-
tures and colors, middle-level visual features like object
part attributes, and high-level visual features like object
semantic information. Note that, the lower-level coarse and
high-level fine structures of objects with simple textures
(e.g., grass) are similar, which helps these textures to be syn-
thesized well enough at the early generation stage. As a
result of limited network parameters, these simple visual
features may be cleaned away quickly during the later gen-
eration stage when the generator focuses on complex object
textures, or the model has to give up synthesizing incremen-
tal fine details for these objects.

To address this issue, we propose the LSCA to relieve the
information loss by producing a co-attention map to refine
image features. It fuses features at different scales and

dimensions with the label guidance. The structure of our
proposed LSCA is demonstrated in Fig. 5. It has three inputs:
previous low-level visual features hk�1, current high-level
visual features fk, which is the output of current GenResBlk,
and the label mapMwith semantic information.

First, to avoid the Checkerboard-Artifacts issue [40], hk�1

is upscaled by a factor of 2 and operated by a 3� 3 convolu-
tion to produce a merge-able low-level feature h0

k�1. Besides,
we resizeM to the same size as h0

k�1 and fk. The resizedM is
defined as fm. Second, all the above three features are
concatenated to obtain an attention map Am by passing it in
a convolution layer activated by a sigmoid function. Finally,
h0
k�1 and fk are filtrated by Am to yield the fused feature fk,

described as:

fk ¼ h0
k�1 �Am þ fk � ð1�AmÞ; (7)

where � represents element-wise product with broadcasting
and þ indicates an element-wise sum operation.

3.2 Bring the Gap Between Label and Image

We propose a set of novel discriminators and loss functions
to constrain the synthesized images thus encourage high-
quality images with rich details generation from label maps.

3.2.1 Hierarchical Perceptual Discriminator

For a GAN network, competition in this minimax two-
player game drives both models to improve their perfor-
mance until the counterfeit samples are indistinguishable
from the genuine samples [7]. In this paper we propose
novel hierarchical perceptual discriminators D, whose dis-
criminative ability is strong and competitive in contrast to
our generator’s generative power thus encourage high-qual-
ity image generation.

The translation process from label to image consists of
the synthesis of a variety of visual concepts for multiple
objects, such as textures, various compositional parts, and
categorized attributes. Thus, fully checking the object
details, parts and category information is beneficial for
improving the ability of a discriminator. Specifically, we
design three independent discriminators (i.e., D1, D2 and
D3) to consider multi-scale information. All the discrimina-
tors are designed in PatchGAN [8] style which means that
no fully-connected layer is used to capture global informa-
tion. All the real samples are resized to the size of the gener-
ated samples. Specifically, we equip our discriminators
with three novel model designs (i.e., hierarchical discrimina-
tion, mini-inception block and perceptual branch) and one

Fig. 4. The structure of our DG-Norm. The input feature is normalized by
batch normalization first. Then we use both the label map and global fea-
ture to predict the new distribution parameters which effect the normal-
ized feature.

Fig. 5. The structure of an Label Guided Spatial Co-Attention (LSCA)
block. Our LSCA fuses features in different layers by an attention map
with label guidance. C denotes the operation of concatenating.
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novel function design (i.e., foreground enhancement mask),
which make them significantly different from existing ones.
The details will be described in the following subsections.

Hierarchical Discrimination. As shown in Figs. 7 and 8, for
both models, we have multiple discriminators to discrimi-
nate multi-scaled images Xi. The structure of D3 with full
components is shown in Fig. 6. A W �H image contains
more precise high-level visual information than its half-
sized (0:5W � 0:5H) image. Thus,D3 has three levels of out-
puts to recognize visual concepts: low-, middle- to high-
level, while D2 removes the third output and focuses on
capturing low- and middle-level visual concepts. Similarly,
D1 is designed with the first output to capture low-level
visual concepts.

If we only directly input the images to discriminators
which is a typical and suitable condition for most image
generation tasks (including the unpaired setting in our
label-to-image), the three discriminators in our model are
defined as follows:

D1ðX1Þ ¼ fD1
1ðX1Þg;

D2ðX2Þ ¼ fD1
2ðX2Þ;D2

2ðX2Þg;
D3ðX3Þ ¼ fD1

3ðX3Þ;D2
3ðX3Þ;D3

3ðX3Þg; (8)

whereDl
i indicates the output ofDi in level l.

Mini-Inception Block. To increase the depth of the discrim-
inator network while keeping the computational budget
constant, we borrow the idea of Inception [41] and design a
mini-inception block to further improve our discriminator.
As Fig. 6 shows, it has three parallel branches. The different
branches extract features in different levels and combine
them as the output.

Perceptual Branch. In VGG-GAN [42], a pre-trained deep
classification network is embedded inside the discriminator
to improve the robustness and efficiency of perceptual
losses. However, directly embedding a pre-trained deep
classification network works for facial images with a single
object but fails for natural images with several objects. To
address this issue, we consider a pre-trained deep classifica-
tion network as a supplementary perceptual branch to our
discriminator. Our framework is different from VGG-GAN
in two important aspects. First, our discriminators are
designed mainly based on an independent encoder struc-
ture. Second, we add the perceptual branch to boost their
performance as a supplementary module. If the perceptual
part is removed, our discriminators can still distinguish
samples with a weaker ability, while discriminators in

VGG-GAN would be non-functional. As shown in Fig. 6,
we divide the perceptual branch into three parts v1, v2 and
v3. The perceptual information extracted from each part is
combined to the main branch by concatenation. In addition,
we choose VGG16 [43] pre-trained on the ImageNet [44],
and all parameters are fixed during training.

Apart from basic discriminator structure design, we pro-
pose novel Foreground Enhancement Mask in the adversarial
loss calculation. Compared with substances in the back-
ground, foreground objects have more complex textures,
which make them difficult to synthesize. Enabling the dis-
criminator to focus more on the foreground may boost the
ability of foreground object generation. Motivated by this,
we multiply the prediction result with a weight map Wl

i to
increase the weight of foreground parts when calculating
the GAN loss function. Different from the current self-atten-
tion mechanism in image generation [45], our function uses
an accurate weight map to lead the attention on foreground
parts with little computational cost. Specifically, a label map
M can be manually divided into two parts: foreground pix-
els (e.g., vehicle, bicycle and sign) with a small number A
and background pixels (e.g., sky, building and road) with a
large number B. To obtain Wl

i, we create a foreground
enhance mask Men which only contains two values. All
background pixels have value P and all foreground pixels
have value T � P , where T is a hyper-parameter to control
the rate of enhancement. For unpaired-data learning, since
real samples do not have the corresponding label map, it is
important to keep the mean value of the whole mask Men to
1. Thus, P can be calculated as:

P ¼ ðAþBÞ=ðT �AþBÞ (9)

Our PatchGAN-style discriminators’ outputs share the
same spatial layout of the input images and its label map
M. Thus, we can adjust each pixel’s weight of the discrimi-
nation result Dl

i by simply multiplying a Men-related
enhancement map Wl

i, which shares the same scale with Dl
i.

To obtain Wl
i, we perform average pooling on Men with dif-

ferent kernel sizes.
Based on adversarial loss calculation functions proposed

in previous works [7], [46], we use LR
adv and LF

adv to indicates
adversarial loss functions for real and fake samples. Thus,
the GAN loss function for the generator is:

LG
1 ðXÞ¼

X
i

1Pi
l¼1 �il

Xi

l¼1

�ilðEil
M½LR

advðDl
iðXiÞÞ�Þ: (10)

Fig. 6. The proposed hierarchical perceptual discriminator structure, which includes two branches. The perceptual branch take the images as the
input. The concatenation of images and the corresponding label maps are fed to the main branch in Lab2Pix-V2, while in Lab2Pix-V1, only images
are fed. v1, v2 and v3 indicate Conv1 1-pool3, Conv4 1-pool4 and Conv5 1-pool5 of pretrained VGG16. s represents stride in convolution and pooling. C
denotes the operation of concatenating.
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The GAN loss function for the discriminators can be
divided into two parts: real prediction loss and fake predic-
tion loss, which can be expressed as:

LD
1 ðX;YÞ ¼

1

2
ðLD

1 ðYÞR þ LD
1 ðXÞF Þ: (11)

We obtain the fake prediction loss as:

LD
1 ðXÞF ¼

X
i

1Pi
l¼1 �il

Xi

l¼1

�ilE
il
M½LF

advðDl
iðXiÞÞ�: (12)

As for real prediction loss, the foreground enhancement
mask is not available in unpaired-data learning. Thus, it can
be calculated as:

LD
1 ðYÞR¼

X
i

1Pi
l¼1 �il

Xi

l¼1

�ilE½LR
advðDl

iðYiÞÞ�; (13)

where

Eil
M½q� ¼ E½Wl

i � q�; (14)

and � is element-wise dot production and �il is the hyper-
parameter. We set �i1 ¼ 1 and �iðlþ1Þ ¼ 1

2�il. Note that the
sketch maps lack semantic categorical information, thus we
do not use the foreground enhancement mask, which is
equivalent to settingWl

i as a matrix of ones.
Finally, the loss function of our GAN is:

L1ðX;YÞ ¼ LG
1 ðXÞ þ LD

1 ðX;YÞ: (15)

3.2.2 Loss Functions

We propose a novel and general Sharpness Enhancement Loss
for the photo-realistic image generation. Onemajor difficulty
in synthesizing high-resolution images is that the network
may fail to penalize real but blurry images. To solve this
problem, we downscale real images and upscale the down-
sampled ones both with a scale factor 2 to obtain real but
blurry images, and treat them as fake samples. If discrimina-
tors can differentiate these samples, theywill force the gener-
ator to synthesize sharp and realistic images in return.
Specifically, wemanually pre-process the training samples Y
into three resolutionsYf

i ði ¼ 1; 2; 3Þ, whereYf
1 has the lowest

resolution. When training our discriminators, we only con-
sider the ground-truth image Yi as the real sample. The
sharpness enhancement loss is a supplement to the genera-
tive adversarial loss. On the one hand, we directly add the
extra fake prediction loss. On the other hand, we need to
increase the real prediction loss with the same weight. Since
this function itself only adds the loss on the fake part to the
total adversarial loss, we keep the real-fake balance by add-
ing the real part loss value with the same weight. The loss
function is defined as:

L2ðY;YfÞ ¼ 1

2
ðLD

1 ðYÞR þ LD
1 ðYfÞF Þ: (16)

4 LAB2PIX MODEL

To evaluate the proposed modules and optimization strate-
gies, we instantiate our Lab2Pix frameworkwith twomodels

(i.e., Lab2Pix-V1 and Lab2Pix-V2) for the label-to-image task
under unpaired-data and paired-data settings respectively.
According to the big gap of the two different settings, we
slightly adjust the models and propose extra novel loss func-
tions for better performance.

4.1 Lab2Pix-V1

The Lab2Pix-V1 model is an end-to-end label-to-image net-
work to synthesize a high-resolution photo-realistic image
trained with unpaired data.

4.1.1 Model

Our Lab2Pix-V1 model mainly consists of one generator and
three independent discriminators. The generator Gv1 is in
essence a mapping function, which transfers a label map M
of size W �H into an image Xi of size W �H finally.
Inspired by the success of progressive generation scheme in
other tasks [47], [48], our generator produces three different
scale images in one forward process. The generation process
can be defined as follows:

Xi ¼ Gv1ðz;MÞ; i ¼ 1; 2; 3 (17)

where z is a 128-dim noise providing the style informa-
tion of the image Xi, X3 is the final W �H synthesized
image, and X1 and X2 are synthesized images of lower res-
olutions. Specifically, the generator produces outputs of
three scales in a coarse-to-fine manner to keep training
stable when no paired data is provided. Note that the
scale of Xiþ1 is as twice as Xi. We use the discriminators
described in the previous sections directly, and we notate
them as Dv1 iði ¼ 1; 2; 3Þ.

4.1.2 Auxiliary Loss Functions

To help stabilize the unpaired-data training and help the
model converge, we propose two novel auxiliary loss func-
tions in Lab2Pix-V1.

Image Consistency Loss. In StackGAN++ [6], a color-con-
sistency regularization, e.g., color mean value and covari-
ance, is proposed to make sure the multi-scale generated
samples are consistent. This constraint works for synthesiz-
ing a single object, but not for our case where images con-
tain multiple objects with complex textures. In addition, as
the resolution of synthesized image increases, the training
process tends to be more unstable especially with unpaired-
data training. Inspired by StackGAN++ [6], we postulate
that if we keep the synthesized images at different scales
with similar global structures and contents, the network
will tend to be more stable. Consequently, we propose an
image consistency loss to guarantee the similarity of the
generated images in our unpaired-data model.

Specifically, the generator outputs Xi ði ¼ 1; 2; 3Þ at one
time. We consider two adjacent outputs as a pair, and two
pairs: ðX1;X2Þ and ðX2;X3Þ are acquired. We adopt a
VGG16 [43] pre-trained on the ImageNet [44] to process
each synthesized image to obtain five features respectively
from ‘Conv1 2,’ ‘Conv2 2,’ ‘Conv3 2,’ ‘Conv4 2’ and ‘Conv5 2’.
Let Flðl ¼ 1; 2; 3; 4; 5Þ be the lth output. The loss function
can be described as:
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Lv1 3ðXÞ ¼
X2
i¼1

X
l

kFlðP2ðXiþ1ÞÞ �FlðXiÞk2; (18)

where X means the set of Xi and P2 indicates the pooling
with stride 2.

Cycle Segmentation Loss. To support the unpaired-data
training process where the input labels are not paired to the
input images, we design a cycle segmentation loss. The
training dataset consists of data from two domains: the label
map domain Md and the image domain Yd. Our generator
learns a mapping function G : Md ! Yd, while we apply
segmentation networks ICNet [49] to learn another map-
ping function S : Yd ! Md. Since our generator progres-
sively synthesizes images of three different scales, we apply
three independent segmentation networks S1, S2 and S3 to
obtain their semantic maps or sketch maps. Consequently,
our cycle segmentation loss is defined as:

Lv1 4ðX;MÞ¼�
X
i

1

HW

XH;W

h¼1;w¼1

log
eS

n;h;w
i

ðXiÞPN
n¼1 e

S
n;h;w
i

ðXiÞ
; (19)

where H, W is the height and width of the image. N is the
class number of the whole dataset. Sn;h;w

i represents the out-
put in position ðh;wÞ of predicted class n. n is the correct
class of pixel in position ðh;wÞ. For the sketch-to-image task,
there are only two classes (N ¼ 2): sketch pixels and blank
pixels.

4.1.3 Optimization

With previously defined loss functions in Formulas (15),
(16), (18) and (19), we obtain the overall loss function to
optimize our network, which is expressed as follows

Lv1ðX;Y;Yf ;MÞ ¼ Lv1 1ðX;YÞ þ �2Lv1 2ðY;YfÞ
þ�3Lv1 3ðXÞ þ �4Lv1 4ðX;MÞ; (20)

where �2, �3 and �4 are weights for each auxiliary loss.
In addition, the whole network is required to learn

parameters of Gv1, Dv1 i ði ¼ 1; 2; 3Þ and Si ði ¼ 1; 2; 3Þ.
Therefore, we consider Gv1 and Si ði ¼ 1; 2; 3Þ as net1, and

Dv1 iði ¼ 1; 2; 3Þ as net2. When optimizing the parameters of
net1, the parameters of net2 are fixed and vice versa. We
train the network iteratively until convergence.

4.2 Lab2Pix-V2

The Lab2Pix-V2 model is trained in a paired-data manner,
with paired data, where the given label map M and ground
truth Y indicate the same semantic content.

4.2.1 Model

Like Lab2Pix-V1, Lab2Pix-V2 consists of one generator and
several independent discriminators, and its generator Gv2

maps a label map M of size W �H to an image Xi of size
W �H finally. The mapping function Gv2 can be described
as follows:

X ¼ Gv2ðz;MÞ: (21)

Note that, the generator only produces one final image X of
size H �W itself since the paired data guarantees the rela-
tive stability of training. It has been proved efficient [5] to
discriminate images in multiple scales for high-resolution
image generation. Thus, we downsample X with different
kernel sizes to obtain smaller images X1 and X2, and we
rename X to X3 to maintain consistency in notations. The
framework of Lab2Pix-V2 is illustrated in Fig. 8. Note that,
we do not add the LSCA into this model on account of our
limited memory when experimenting with the same train-
ing parameters with our competitors. The framework is
illustrated in Fig. 8.

We use three independent discriminators (i.e., Dv2 1,
Dv2 2 and Dv2 3), which share similar structures with those
in Lab2Pix-V1, to consider multi-scale information. How-
ever, to save memory, we address the label and image
matching issue in Lab2Pix-V2 discriminators instead of
additional loss functions. Specifically, we concatenate the
images with label maps into the discriminators of Lab2Pix-
V2, which is illustrated in Fig. 6. For each of the three dis-
criminators Dv2 i (i ¼ 1; 2; 3), the input of the discriminator
can be expressed as:

Fig. 7. The proposed unpaired-data Lab2Pix-V1 structure. It takes either a sketch label map or a semantic label map as input to produce photo-realis-
tic images. The generator use an adaptive label encoder to separately encode the sketch and semantic label maps according to their characteristics,
and gradually outputs higher-resolution (small, medium and large) images in one forward process. The structures of different images is guaranteed
to be close by the image consistency loss, while the correspondence of the output image and input label is verified by the cycle segmentation loss.
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X�
i ¼ ðXi;MÞ; Y�

i ¼ ðYi;MÞ: (22)

The three discriminators in our model are defined as:

Dv2 1ðX�
1Þ ¼ fD1

v2 1ðX�
1Þg;

Dv2 2ðX�
2Þ ¼ fD1

v2 2ðX�
2Þ;D2

v2 2ðX�
2Þg;

Dv2 3ðX�
3Þ ¼ fD1

v2 3ðX�
3Þ;D2

v2 3ðX�
3Þ;D3

v2 3ðX�
3Þg; (23)

whereDl
v2 i indicates the output ofDv2 i on level l.

Thus, the GAN loss function for the generator is:

LG
v2 1ðX�Þ¼

X
i

1Pi
l¼1 �il

Xi

l¼1

�ilðEil
M½LR

advðDl
v2 iðX�

i ÞÞ�Þ:

(24)

The GAN loss function for the discriminators can also be
divided into two parts: real prediction loss and fake predic-
tion loss. The discriminator loss can be expressed as:

LD
v2 1ðX�;Y�Þ ¼ 1

2
ðLD

v2 1ðY�ÞR þ LD
v2 1ðX�ÞF Þ: (25)

The fake prediction loss can be calculated as:

LD
v2 1ðX�ÞF ¼

X
i

1Pi
l¼1 �il

Xi

l¼1

�ilE
il
M½LF

advðDl
v2 iðX�

i ÞÞ�:

(26)

We calculate real prediction loss as:

LD
v2 1ðY�ÞR¼

X
i

1Pi
l¼1 �il

Xi

l¼1

�ilE
il
M½LR

advðDl
v2 iðY�

i ÞÞ�:

(27)

We set all hyper parameters in the same way as Lab2Pix-V1.

4.2.2 Auxiliary Loss Functions

To guarantee the quality of the synthesized images, we fol-
low the previous work [3], [5] to use the perceptual loss Lv2 5

and the discriminator feature matching loss Lv2 6 in this
paired-data architecture. The perceptual loss is defined as:

Lv2 5ðX;YÞ ¼
X
i

X
l

�MlkFlðXiÞ �FlðYiÞk1; (28)

where Fl ðl ¼ 1; 2; 3; 4; 5Þ is the lth output of the pretrained
VGG19 network, and �Ml ðl ¼ 1; 2; 3; 4; 5Þ is the weight for
each part. We set �M1 ¼ 1=32, �M2 ¼ 1=16, �M3 ¼ 1=8, �M4 ¼
1=4 and �M5 ¼ 1.

The discriminator feature matching loss can be expressed
as:

Lv2 6ðX;YÞ ¼
X
i

1

k

X
k

kDðkÞ
v2 iðXiÞ �D

ðkÞ
v2 iðYiÞk1; (29)

where D
ðkÞ
v2 i indicates the kth layer output of Dv2 i. The two

loss functions optimize the distribution of generated sam-
ples to be close to that of real samples in different ways.

To match the paired-data setting, we slightly adjust the
original Sharpness Enhancement Loss function described in the
previous section. Specifically, we resize the real image sam-
ples to obtain the blurry ones and use them with unchanged
labels to calculate the additional adversarial loss. The loss
function is defined as

Lv2 2ðY�;Yf�Þ ¼ 1

2
ðLD

v2 1ðY�ÞR þ LD
v2 1ðYf�ÞF Þ; (30)

where Yf� is obtained in the same way as Y�.

4.2.3 Optimization

With the previous defined loss functions in Formulas (24),
(25) and (30), we form the total loss to optimize our net-
work, which can be described as

Lv2ðX;Y;Yf ;MÞ ¼Lv2 1ðX�;Y�Þ þ �2Lv2 2ðY�;Yf�Þ
þ �5Lv2 5ðX;YÞ þ �6Lv2 6ðX;YÞ (31)

where �2, �5 and �6 are weights for each loss. In particular,

Lv2 1ðX�;Y�Þ ¼ LG
v2 1ðX�Þ þ LD

v2 1ðX�;Y�Þ (32)

Lab2Pix-V2 only consists of Gv2 and Dv2 i ði ¼ 1; 2; 3Þ.
Therefore, we directly train the two adversarial components
Gv2 andDv2 iði ¼ 1; 2; 3Þ iteratively until convergence.

Fig. 8. The proposed paired-data Lab2Pix-V2 structure. The generator outputs one high-resolution image in one forward pass and we downsample it
to obtain images in lower resolutions. The generated samples and real samples are concatenated with the label maps respectively before inputted to
Di. Note that, we give up LSCA owing to our limited hardware settings.
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5 EXPERIMENTS

5.1 Datasets

We evaluate our proposed methods on six publicly avail-
able datasets. These include four label-to-image datasets:
Cityscapes [50], COCO-Stuff [51], ADE20 K [52], and
Facades [53], and two sketch-to-image datasets: Edges2shoes
and Edges2handbags (provided by Pix2Pix [8]). Cityscapes
contains 2048� 1024 resolution images recorded in street
scenes from 50 different cities. Each street scene image is
annotated with labels from 35 categorizes. It has 2,975
samples for training and 500 for validation. All images are
resized to 512� 256 or 1024� 512 through nearest neigh-
bor interpolation. COCO-Stuff consists of various scene
images with various resolutions. The objects in each image
belong to 182 different categories. The dataset consists of
118,000 training samples and 5,000 validation samples.
ADE20 K is similar to COCO-Stuff. It defines 150 semantic
categories and contains 20,210 training samples and 2,000
validation samples. Both images from COCO-Stuff and
ADE20 K are resized to 256� 256 resolution. Facades con-
tains 12 semantic labels and all images are 256�256. It has
400 training samples and 100 validation samples. The
other two datasets are sketch datasets with image resolu-
tion 256�256. Edges2shoes has approximately 50,000 sam-
ples with 49,825 for training and 200 for validation, while
Edges2handbags is the larger one with 138,567 for training
and 200 for validation.

5.2 Implementation Details

Lab2Pix-V1 Training. For the semantic label to image task,
we set batch size N ¼ 1, hyper-parameter T ¼ 2 and epochs
as 100. During the whole training process, we linearly
increase �2 from zero to one. The learning rates are set as
0.0002 for the first 50 epochs, and then decay to 0 in the
remaining 50 epochs. For the sketch label to image task, we
train the network for 10 epochs with N ¼ 4. �2 and the
learning rate are set as 1 and 0.0002 respectively. In addi-
tion, for all experiments, we set �3 ¼ 5e�6 and �4 ¼ 10. The
Adam optimizer [54] is adopted with b1 ¼ 0:5 and b2 ¼
0:999, and we choose vanilla adversarial loss calculation [7]
for a better performance. All experiments are conducted on
an NVIDIA Titan Xp GPU.

Lab2Pix-V2 Training. We design 4 GenResBlks apart from
those in the semantic label encoder and one downsample
operation on X3 to obain X2 for 512� 256 and 256� 256. In
the higher-resolution (1024� 512) synthesis model, 5 addi-
tional GenResBlks and two downsample operations on X3

are set to obtain X1 and X2. For the Cityscapes dataset, we
set batch size N ¼ 20 for 512� 256 image synthesis, and
N ¼ 8 for 1024� 512 image synthesis. We train the model
for 200 epochs. For the COCO-Stuff and ADE20 K datasets,
we set batch size N ¼ 40 for 256� 256 image generation.
The model is optimized for 100 epochs. The learning rates
for all networks are set as 0.0002 at first and linearly decay
to 0 in the last half training epochs. We set hyper-parame-
ters T ¼ 5, �2 ¼ 1, �5 ¼ 10 and �6 ¼ 10. The Adam opti-
mizer [54] is adopted in all experiments with b1 ¼ 0 and
b2 ¼ 0:9, and we choose hinge version adversarial loss cal-
culation [46] for a stable training. All experiments are con-
ducted on 4 NVIDIA Tesla V100 GPUs.

5.3 Evaluation Metrics

Following previous works [3], [4], [5], [9], [10], we adopt
segmentation networks to obtain three standard segmenta-
tion metric scores to evaluate our method on the semantic
label to image task. They are per-pixel accuracy (PPA), per-
class accuracy (PCA) and mean class IoU (C-IoU) which are
usually named as FCN scores. Specifically, we feed the gen-
erated samples to the segmentation networks and compare
the predictions with the original labels. We adopt FCN [55]
for unpaired-data learning on cityscapes dataset, DRN-D-
105 [56] for paired-data learning on cityscapes dataset,
DeepLabV2 [57] for COCO-Stuff dataset and Uper-
Net101 [58] for ADE20 K dataset. To ensure efficiency, all
segmentation networks have been pre-trained on the corre-
sponding datasets. Besides, FID [59] is also used with Incep-
tion V3 model [60] in our evaluation, which can measure
the distance between the generated and real samples in
terms of data distributions. It is widely adopted in various
image synthesis tasks, including single-object synthesis [2],
[6] and multi-object synthesis [3], [23]. Thus, we apply FID
to all but Facades dataset. For the Facades dataset, we utilize
PSNR and SSIM [61] that are also used in previous
works [4], [9], [10]. The PSNR value represents the disparity
between the fake and real samples on the pixel level, while
SSIM measures the content variation in terms of image
luminance, contrast and structure. Compared with PSNR,
SSIM works better in evaluating the quality of the synthe-
sized image. Note that our models are not sensitive to ran-
dom seeds. Thus, we only report each score with single
stable value for each experiment following competitors.

5.4 Ablation Study

We conduct ablation studies on both the paired-data and
unpaired-data settings to fully demonstrate the advantage
of our proposed components and loss functions. We first
introduce the Baseline Models that we use.

For Lab2Pix-V1, we set SPADE with proposed cycle seg-
mentation loss (L4) as the basic baseline Au and progres-
sively add each component to obtain Lab2Pix-V1. Totally,
seven baselines (i.e., Au, Bu, Cu, Du, Eu, Fu and Gu) are con-
structed, and Lab2Pix-V1 is denoted asHu. Based on Au, we
make Bu by adopting the progressive generation scheme.
We add LSCA to Bu and obtain Cu. Then, L3 is further
added to compose baseline Du. We equip Du with our hier-
archical perceptual discriminators (HPD) to make baseline
Eu. With foreground enhancement masks (FE) added, base-
line Fu is constructed based on Eu. Baseline Gu adds the
sharpness enhancement loss (L2) to Fu. Finally, we add DG-
Norm to Gu and obtain the full model Hu. We show quanti-
tative results in Table 1, and demonstrate the qualitative
results in Fig. 9.

For Lab2Pix-V2, we take SPADE as the basic baseline As

and gradually add each component to the model to obtain
Lab2Pix-V2. We add our hierarchical perceptual discrimina-
tors (HPD) to As to obtain Bs. Then, foreground enhance-
ment masks (FE) are further added to train the baseline Cs.
Baseline Ds adds the sharpness enhancement loss (L2) to
Cs. Finally, with the global encoder (GE) and DG-Norm, the
full model Lab2Pix-V2 is denoted by Es. The quantitative
results are shown in Table 2, and the qualitative results are
demonstrated in Fig. 10.
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We can make the following observations from the ablation
analysis results from Tables 1 and 2. Comparing Au with Bu

which obtain comparable metrics, naively adding progres-
sive generation scheme to the Lab2Pix model is incapable of
improving performance. We observe that pure progressive
generation training of Lab2Pix will be unstable. For all met-
rics, baseline Cu is lower than the baseline Du, which con-
firms the importance of L3. Also, as we can see in Fig. 9, the
generated samples without L3 are significantly worse than
those with L3. These pictures are rendered in an unreason-
able way, which proves L3 can stabilize the synthesis pro-
cess when the progressive generation scheme is adopted.
Comparing Du with Eu and As with Bs, baseline models
with HPD (i.e., Eu and Bs) significantly decrease the PPA
scores. This means that HPD tends to improve the quality of
generation especially for those relative large objects. Base-
line Gu outperforms Fu and Ds outperforms Cs in almost
every metric, which indicates L2 improves the entire struc-
ture of images as it is designed to. Take row one in Fig. 9 as
an example, the vehicles synthesized by Gu are clear and
easy to recognize. If we remove L2 or HPD, these parts
become indistinct. Row three in Fig. 10 confirms this again
in the paired-data setting. Compared with baseline Fu,
which is equipped with the foreground enhancement mask
FE, baseline Eu increases its FID, which indicates that FE
works effectively in unpaired-data learning. As for paired-
data learning, baseline Bs, which is not equipped with FE,
obtains lower scores in all metrics compared with Cs, which
is equipped with FE. Especially, the 16% gap in PCA and

15% gap in C-IoU are the biggest among all adjacent base-
lines. This proves that FE does improve the generation of
foreground objects. Take row five of Fig. 9 and row three of
Fig. 10 as examples, the removal of FE leads to the dim
boundary between foreground and background objects.
Recall that the baselines Gu and Ds are not equipped with
DG-Norm while Hu and Es are. From comparison of Ds

with Es, and Gu with Hu, we can conclude that our pro-
posed DG-Norm increases model performance, especially
in terms of PCA and C-IoU which reflect the quality of rela-
tive small and complex foreground objects.

In summary, by observing all metrics in Tables 1 and 2
and qualitative comparison results in Figs. 9 and 10, the
results clearly demonstrate the effectiveness of our pro-
posed Lab2Pix-V1 and Lab2Pix-V2 models in generating
natural photo-realistic images in both paired-data and
unpaired-data settings. In detail, LSCA and image consis-
tency loss (L3) are the most essential for Lab2Pix-V1, while
HPD and foreground enhancement mask make the most
important contributions to Lab2Pix-V2. Note that, if we
remove the cycle segmentation loss (L4) which is used to
bring the layout of input label and output image closer,
training will not converge. Because the generated images
are not required to be similar to the input labels when lack-
ing the necessary constraint of this loss function.

5.5 Comparison With State-of-the-Art Models

For the semantic label to image task, we compare our Lab2-
Pix models with six state-of-the-art methods on the City-
scapes, COCO-Stuff, ADE20 K and Facades datasets. The
baselinemodels include three unpaired-datamethods Cycle-
GAN [10], SCAN [9] and SPAP [4], and five paired-data

Fig. 9. Ablation study results on the Cityscapes dataset with unpaired-data training. Lab2Pix-V1 with all components obtains the best results.

TABLE 1
Ablation Study of the Proposed Unpaired-Data

Lab2Pix-V1 on the Cityscapes Dataset

baseline setup PPA PCA C-IoU FID

Au SPADE w/ L4 0.48 0.09 0.08 133.2
Bu Au w/ PG 0.33 0.11 0.08 117.7
Cu Bu w/ LSCA 0.48 0.15 0.12 83.5
Du Cu w/ L3 0.54 0.18 0.14 83.4
Eu Du w/ HPD 0.64 0.22 0.18 76.0
Fu Eu w/ FE 0.69 0.23 0.18 67.9
Gu Fu w/ L2 0.77 0.22 0.18 65.0

Hu Lab2Pix-V1 0.76 0.25 0.20 67.4

FCN scores are obtained with FCN [55].

TABLE 2
Ablation Study of the Proposed Unpaired-Data Lab2Pix-V1

and Paired-Data Lab2Pix-V2 on Cityscapes Dataset

baseline setup PPA PCA C-IoU FID

As SPADE 0.930 0.681 0.592 57.4
Bs As w/ HPD 0.934 0.711 0.621 49.2
Cs Bs w/ FE 0.935 0.727 0.636 48.0
Ds Cs w/ L2 0.934 0.731 0.639 46.0

Es Lab2Pix-V2 0.936 0.738 0.646 45.5

FCN scores are obtained with DRN-D-105 [56].
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methods Pix2Pix [8], Pix2PixHD [5], SPADE [3], CC-
FPSE [38] and TSIT [39]. As for the sketch label to image task,
CycleGAN [10] and MUNIT [12] are chosen as the baseline
models.

5.5.1 Lab2Pix-V1 Comparison

We choose three unpaired-data competitors: CycleGAN [10],
SCAN [9], SPAP [4] and one paired-data method Pix2Pix [8]
for Lab2Pix-V1 on two label-to-image datasets: City-
scapes [50] and Facades [53]. CycleGAN [10] and MUNIT [12]
are chosen to compare with Lab2Pix-V1 on two sketch-to-
image datasets: Edges2shoes and Edges2Handbags. The quan-
titative results are presented in Tables 3 and 4, and the qual-
itative results are shown in Figs. 11 and 12.

For the label-to-image task, the results are shown in
Table 3. We can observe the significant improvements of
Lab2Pix-V1 over the baselines. It consistently outperforms
all unpaired-data methods on all the metrics except for the
PSNR score. However, it is widely agreed that SSIM is a bet-
ter metric than PSNR in terms of evaluating image quality.
More specifically, compared with SPAP, the current best
unpaired-data model, our Lab2Pix-V1 outperforms it by
0.03, 0.03, 0.03 and 0.07 for PPA, PCA, C-IoU and SSIM,
respectively. Compared with the paired-data method Pix2-
Pix, we surpass it by 0.05 on PPA and 0.02 on C-IoU, and
achieve the same PCA score. These results verify the advan-
tage of our proposed method. In addition, Fig. 11 shows a
qualitative comparison with these methods on the City-
scapes dataset. Compared with SPAP, for instance, Lab2-
Pix-V1 generates more photo-realistic images, which render

sharper boundaries for adjacent objects (e.g., vehicles) and
more natural textures and details for objects.

For the sketch-to-image task, a comparison is conducted
on the Edges2shoes and Edges2handbags datasets. The
quantitative results are shown in Table 4. For a fair compari-
son, we also report training information about memory and
time cost. Both CycleGAN and MUNIT are trained on the
same datasets with officially recommended training settings
except that we keep the same batch size (i.e., 4) with Lab2-
Pix-V1. For CycleGAN, MUNIT and Lab2Pix-V1, training
epochs are all set as five, while Lab2Pix-V1* increases the
training epochs to ten. From Table 4, we make the following
observations by comparing with the current best model
MUNIT. First, our Lab2Pix-V1 model requires less compu-
tational resources (8GiB versus 12GiB). Second, our Lab2Pix-
V1 model achieves slightly better FID scores on both data-
sets, but significantly decreases the training time. Specifi-
cally, the training time of Lab2Pix-V1 is only approximately
36% of that of MUNIT. Third, trained for twice the number
of epochs than Lab2Pix-V1, our Lab2Pix-V1* model reaches
the best FID scores on both datasets, but still uses less mem-
ory and training time than MUNIT. All quantitative results
demonstrate that our method achieves the best trade-off
between quality and efficiency (both time and memory
cost). Furthermore, qualitative synthesized examples are
shown in Fig. 12, which demonstrate that our proposed
methods are able to generate photo-realistic images with
convincing natural textures and details about shoes and
bags, showing better performance than the baselines.

Fig. 10. Ablation study results on the Cityscapes dataset with paired-data training. Lab2Pix-V2 with all components obtains the best results.

TABLE 3
Quantitative Results of Different Methods on

Cityscapes and Facades Datasets

Method PPA PCA C-IoU PSNR SSIM

Dataset Cityscapes Facades
CycleGAN 0.52 0.17 0.11 11.72 0.20
SCAN 0.64 0.20 0.16 10.67 0.17
SPAP 0.73 0.22 0.17 12.20 0.21
Lab2Pix-V1 0.76 0.25 0.20 11.85 0.28

Pix2Pix 0.71 0.25 0.18 - -

For all metrics, higher is better. Note that Pix2Pix is a paired-data method.

TABLE 4
Quantitative Results of Different Methods on the
Edges2shoes and Edges2handbags Datasets

Method FID Memory(GB) Time

Datasets shoes handbags Training Info

CycleGAN 137.9 98.0 11 1.4
MUNIT 105.5 87.4 12 2.8
Lab2Pix-V1 100.1 81.1 8 1.0
Lab2Pix-V1* 76.7 78.7 8 2.0

Memory usage is measured with batch size 4. Time usage ratio indicates the
entire training time normalized by that of Lab2Pix-V1. Lab2Pix-V1* is trained
for ten epochs while all the other models are trained for five epochs.
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5.5.2 Lab2Pix-V2 Comparison

We compare our Lab2Pix-V2 model with Pix2PixHD [5],
SPADE [3], CC-FPSE [38] and TSIT [39] on three datasets:
Cityscapes [50], COCO-Stuff [51] and ADE20 K [52]. The
quantitative results are presented in Table 5. The qualitative
results for the three datasets are respectively shown in
Figs. 13, 15, and 16. More randomly selected samples are
attached to the supplementary material., which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2022.3186752
As can be observed in Table 5, Lab2Pix-V2 obtains the best
performance in FID on all three datasets. Besides, we can
observe that our Lab2Pix-V2, CC-FPSE and TSIT all obtain
larger values in almost all FCN scores compared to the
ground truth on all datasets. However, real samples set the
standard of realistic and label-matched results, which
makes an apparent conflict with the traditional evaluation
strategy that “higher scores indicate better performance”.
We think higher FCN scores only indicate these methods
generate samples easier for segmentation networks to make
pixel-level classification, instead of they synthesize images
in better image quality or matching input labels better. To

address this issue, we add a user study to evaluate our
method.

On the Cityscapes dataset, our method obtains compara-
ble FCN scores with CC-FPSE and TSIT, and significantly
outperforms other methods. Specifically, it surpasses base-
line SPADE by 2.4% on PCA and 2.4% on C-IoU. Besides,
our Lab2Pix-V2 model achieves significantly better FID val-
ues than all other methods. Around 15 point reduction in
FID is made by Lab2Pix-V2 compared with the baseline
model SPADE. The qualitative comparison shown in Fig. 13
also confirms our improvements. For instance, in rows four
and eight, only Lab2Pix-V2 synthesizes clear and realistic
textures of both vehicles and buildings in these images. In
Fig. 14, we give samples generated by Lab2Pix-V2-H. We
can observe that with our proposed components, the images
in higher resolution give more detailed textures, especially
in those areas with small foreground objects.

Fig. 12. Comparison on the Edges2shoes and Edges2-handbags data-
sets with unpaired-data training.

TABLE 5
Quantitative Results of Different Methods on Cityscapes,

COCO-Stuff and ADE20 K Datasets

Method PPA(%) PCA(%) C-IoU(%) FID

Cityscapes
Ground Truth 93.0 72.7 62.1 -
Pix2PixHD 92.2�0.2 64.4�1.5 55.5�1.6 70.3�3.8
SPADE 93.4�0.1 70.4�0.6 61.2�0.6 62.3�0.9
CC-FPSE 93.5�0.1 72.5�0.9 63.0�0.8 54.8�0.7
TSIT 93.6�0.1 71.5�0.1 62.4�0.3 85.9�0.9
Lab2Pix-V2 93.6�0.0 72.8�0.5 63.6�0.6 47.7�1.2

COCO-Stuff
Ground Truth 59.6 39.3 28.3 -
Pix2PixHD 56.4�0.1 32.0�0.2 22.8�0.1 25.7�0.3
SPADE 61.6�0.5 38.1�0.4 28.0�0.4 22.2�0.6
CC-FPSE 63.6�0.3 41.6�0.1 30.9�0.1 17.8�0.2
TSIT 58.4�0.1 34.7�0.1 25.2�0.2 22.1�0.9
Lab2Pix-V2 62.9�0.3 40.9�0.6 30.5�0.5 16.8�0.5

ADE20 K
Ground Truth 77.3 44.8 33.6 -
Pix2PixHD 78.2�0.9 35.8�0.4 32.5�0.4 38.2�0.1
SPADE 81.2�0.1 48.0�0.6 41.0�0.3 34.3�0.3
CC-FPSE 82.3�0.3 50.3�0.8 42.9�0.7 33.2�0.9
TSIT 79.8�0.2 43.4�0.3 36.9�0.2 35.3�0.6
Lab2Pix-V2 80.8�0.4 47.7�0.1 40.7�0.2 28.2�0.5

We demonstrate the metrics obtained by real images for reference. Each method
is trained with three different random seeds, and each test sample for each
trained model is inferred three times with different random noises.

Fig. 11. Comparison on the Cityscapes dataset with unpaired-data training. Images of CycleGAN, SCAN and SPAP are from paper [4]. Our Lab2Pix-
V1 generates more realistic images than other unpaired-data methods including CycleGAN, SCAN and SPAP. Note that Pix2Pix is one of the paired-
data methods.
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As for COCO-Stuff, our Lab2Pix-V2 model achieves com-
parable performances on FCN scores compared with
SPADE and CC-FPSE, and obtains 4.5%, 6.2% and 5.3%
higher FCN scores compared with TSIT. Meanwhile, 5.4
reduction in FID compared with the baseline SPADE shows
our Lab2Pix-V2 is able to synthesize more realistic images.
In Fig. 15, Lab2Pix-V2 can generate both simple and

complex scenes well. For example, in the first and last two
rows, our Lab2Pix-V2 model is able to generate reasonable
and clear object textures in the simple synthesis of one or
two main objects. In terms of complex multi-object scenes,
the generated samples of Lab2Pix-V2 show sharp bound-
aries between each two neighboring instances, and clear
and vivid objects.

Fig. 13. Comparison on the Cityscapes dataset with paired-data training.

Fig. 14. Comparison on the Cityscapes dataset with paired-data training. In each sample set, the left six images from top left to bottom right are the
label map (a), the ground truth (b), the result of SPADE (c), CC-FPSE (d), TSIT (e) and Lab2Pix-V2 (f) in 512� 256 respectively. The right large image
is the result of Lab2Pix-V2-H (g) in 1024� 512.
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Fig. 15. Comparison on the COCO-Stuff dataset with paired-data training.

Fig. 16. Comparison on the Ade20 K dataset with paired-data training.
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In experiments on ADE20 K, our Lab2Pix-V2 obtains
comparable FCN scores but significantly better FID (i.e.,
over 5 point reduction) compared with all other methods.
As we can observe in Fig. 16, in the first two rows, Lab2Pix-
V2 can synthesize more detailed textures (e.g., ripples of
water, folds on bed) in indoor scenes. For outdoor scenes
that are presented in the last four rows, Lab2Pix-V2 paints
recognizable appearances on each object while keeping their
shapes strictly following the input label maps.

In the user study, we invite 10 participators which are
normal people without professional skills in image proc-
essing and recognition for each dataset, and we randomly
choose 100 samples for each participator. Each sample
contains synthesized images of all five methods from the
same input label map. We also provide the corresponding
input label and ground truth image for reference. The
generated images in each sample are randomly shuffled
for a fair comparison. Participators are asked to rank the
five images in each sample according to the image quality
and the matching degree with the input label with no
time limitation. Approaches will obtain from 5 to 1 point
as they are chosen from the best to the worst. We demon-
strate the mean scores obtained by all methods on each
dataset and the Top1 and Top2 rates in Table 6. It can be
observed that images synthesized by Lab2Pix-V2 are

preferred on all datasets, which verifies the superiority of
our method.

5.6 Failure Examples

In Fig. 17, we give some failure examples generated by our
Lab2Pix-V2 model. We can observe that those objects in
multivariate shapes (e.g., various vehicles, trains and pedes-
trians) are not be synthesized well. These instances are usu-
ally relatively small and rare foreground objects that are
able to move or turn themselves. For example, face genera-
tion is an independent generation task addressed by many
works [47], [62]. We will direct our future work towards
these issues by investigating solutions for more fine-grained
synthesis.

6 CONCLUSION

In this paper, we propose a novel end-to-end, GAN-based
framework, Lab2Pix, for the label to image synthesis task.
Recognizing the large gap between label maps and real
images and challenges in both unpaired and paired data set-
tings, we propose effective models for both settings, namely
Lab2Pix-V1 and Lab2Pix-V2. Specifically, for the generator,
we design the Label Guided Spatial Co-Attention (LSCA) to
gradually refine synthesized images under limited parame-
ters, and Double-Guided Normalization (DG-Norm) to
combine local and global characterizations for generation.
To encourage realistic images generation, the discriminators
are designed in a hierarchical architecture to discriminate
image contents in different sizes and complex textures with
foreground enhancement masks leading to focus on chal-
lenging foreground objects. In addition, the sharpness
enhancement loss is proposed to better constrain the net-
work to generating high-resolution realistic images. Our
Lab2Pix framework obtains the state-of-the-art performan-
ces on six public datasets both qualitatively and quantita-
tively, outperforming current best models in both unpaired
and paired data settings. We will study fine-grained texture
generation as a future work.
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