Automating Reading Comprehension
by Generating Question and Answer Pairs

Vishwajeet Kumar’*#, Kireeti Boorla®, Yogesh Meenal,
Ganesh Ramakrishnan’, and Yuan-Fang Li$

TIndian Institute of Technology Bombay, India
HIITB-Monash Research Academy, Mumbai, India
$Faculty of Information Technology, Monash University, Australia
vishwajeet@cse.iitb.ac.in,
{kireeti.boorla, yogesiitbcse}Ogmail.com,
ganesh@cse.iitb.ac.in,
yuanfang.li@monash.edu

Abstract. Neural network-based methods represent the state-of-the-art in
question generation from text. Existing work focuses on generating only ques-
tions from text without concerning itself with answer generation. Moreover,
our analysis shows that handling rare words and generating the most appro-
priate question given a candidate answer are still challenges facing existing
approaches. We present a novel two-stage process to generate question-answer
pairs from the text. For the first stage, we present alternatives for encoding
the span of the pivotal answer in the sentence using Pointer Networks. In our
second stage, we employ sequence to sequence models for question generation,
enhanced with rich linguistic features. Finally, global attention and answer
encoding are used for generating the question most relevant to the answer.
We motivate and linguistically analyze the role of each component in our
framework and consider compositions of these. This analysis is supported
by extensive experimental evaluations. Using standard evaluation metrics as
well as human evaluations, our experimental results validate the significant
improvement in the quality of questions generated by our framework over
the state-of-the-art. The technique presented here represents another step
towards more automated reading comprehension assessment. We also present
a live system’ to demonstrate the effectiveness of our approach.

Keywords: Pointer Network, sequence to sequence modeling, question gen-
eration

1 Introduction

Asking relevant and intelligent questions has always been an integral part of human
learning, as it can help assess the user’s understanding of a piece of text (an article,
an essay etc.). However, forming questions manually has always been an arduous
task. Automated question generation (QG) systems can help alleviate this problem
by learning to generate questions on a large scale and in lesser time. Such a system
has many applications in a myriad of other areas such as FAQ generation, intelligent
tutoring systems, and virtual assistants.

! Demo of the system is available at https://goo.gl/EYvBuZ.

2 Automating reading comprehension by generating question and answer pairs

For a QG system, the task is to generate meaningful, syntactically correct, se-
mantically sound and natural questions from text. Additionally, to further automate
the assessment of human users, it is highly desirable that the questions are relevant
to the text and have supporting answers present in the text.

Figure 1 below shows a sample of questions generated by our approach using
a variety of configurations (vanilla sentence, feature tagged sentence and answer
encoded sentence) that will be described later in this paper.

Sentence: It was adopted into an Oscar-winning film in 1962 by director Robert Mulligan, with a screenplay by Horton Foote.
Feature Tagged Sentence: It[PRP|OJnsubjpass was|VBD|OJauxpass adapted|VBN|O|ROOT into|IN|O|case
... Horton|N|N|O|Compound Foote|N|N|O|Compound

With Features: Who was the director of the film ?
With Features and Answer as “Horton Foote”: Who wrote the movie ?

With Features and Answer as “Robert Mulligan”: Who was the director of the Oscar-winning movie ?

Fig. 1: Example: sample questions generation from text by our models.

Initial attempts at automated question generation were heavily dependent on a
strict, limited, ad-hoc, and hand-crafted set of rules [9, 20]. These rules focus mainly
on the syntactic structure of the text and are limited in their application, only to
sentences of simple structures. Recently, the success of sequence to sequence learning
models [18] opened up possibilities of looking beyond a fixed set of rules for the
task of question generation [17,7]. When we encode ground truth answers into the
sentence along with other linguistic features, we get improvement of 4 BLEU points
along with improvement in the quality of questions generated.

A recent deep learning approach to question generation [17] investigates a simpler
task of generating questions only from a triplet of subject, relation and object. In
contrast, we build upon recent works that train sequence to sequence models for
generating questions from natural language text.

Our work significantly improves the latest work of sequence to sequence learning
based question generation using deep networks [7] by making use of (i) an additional
module to predict span of best answer candidate on which to generate the question
(i) several additional rich set of linguistic features to help model generalize better
(iii) suitably modified decoder to generate questions more relevant to the sentence.

The rest of the paper is organized as follows. In Section 2 we formally describe
our question generation problem, followed by a discussion on related work in Section
3. In Section 4 we describe our approach and methodology and summarize our main
contributions. In Sections 5 and 6 we describe the two main components of our
framework. Implementation details of the models are described in Section 7, followed
by experimental results in Section 8 and conclusion in Section 9.

2 Problem Formulation

Given a sentence S, viewed as a sequence of words, our goal is to generate a question
Q, which is syntactically and semantically correct, meaningful and natural. More
formally, given a sentence S, our model’s main objective is to learn the underlying
conditional probability distribution P(Q|S;#) parameterized by 6 to generate the
most appropriate question that is closest to the human generated question(s). Our
model learns 6 during training using sentence/question pairs such that the probability
P(Q]S;0) is maximized over the given training dataset.

Automating Reading Comprehension by Generating Question and Answer Pairs 3

Let the sentence S be a sequence of M words (wq,ws,ws,...wps), and question
Q a sequence of N words (y1,Y2,y3,-..yn). Mathematically, the model is meant to
generate Q* such that:

Q" = argmax P(Q|S;0) 1)
Q
N
= argmax HP(yi\yl,..yi_l,wl..wM;H) (2)
YiYn i q

Equation (2) is to be realized using a RNN-based architecture, which is described
in detail in Section 6.1.

3 Related Work

Heilman and Smith [9] use a set of hand-crafted syntax-based rules to generate
questions from simple declarative sentences. The system identifies multiple possible
answer phrases from all declarative sentences using the constituency parse tree
structure of each sentence. The system then over-generates questions and ranks them
statistically by assigning scores using logistic regression.

[20] use semantics of the text by converting it into the Minimal Recursion Seman-
tics notation [5]. Rules specific to the summarized semantics are applied to generate
questions. Most of the approaches proposed for the QGSTEC challenge [12] are
also rule-based systems, some of which put to use sentence features such as part
of speech (POS) tags and named entity relations (NER) tags. [3] use ASSERT (an
automatic statistical semantic role tagger that can annotate naturally occurring text
with semantic arguments) for semantic role parses, generate questions based on rules
and rank them based on subtopic similarity score using ESSK (Extended String
Subsequence Kernel). [1] break sentences into fine and coarse classes and proceed to
generate questions based on templates matching these classes.

All approaches mentioned so far are heavily dependent on rules whose design
requires deep linguistic knowledge and yet are not exhaustive enough. Recent successes
in neural machine translation [18,4] have helped address this problem by letting
deep neural nets learn the implicit rules through data. This approach has inspired
application of sequence to sequence learning to automated question generation. [17]
propose an attention-based [2, 11] approach to question generation from a pre-defined
template of knowledge base triples (subject, relation, object). Additionally, recent
studies suggest that the sharp learning capability of neural networks does not make
linguistic features redundant in machine translation. [16] suggest augmenting each
word with its linguistic features such as POS, NER. [8] suggest a tree-based encoder
to incorporate features, although for a different application.

We build on the recent sequence to sequence learning-based method of question
generation by [7], but with significant differences and improvements from all previous
works in the following ways. (i) Unlike [7] our question generation technique is pivoted
on identification of the best candidate answer (span) around which the question
should be generated. (ii) Our approach is enhanced with the use of several syntactic
and linguistic features that help in learning models that generalize well. (iii) We
propose a modified decoder to generate questions relevant to the text.

4 Automating reading comprehension by generating question and answer pairs

4 Approach and Contributions

Our approach to generating question-answer pairs from text is a two-stage process:
in the first stage we select the most relevant and appropriate candidate answer, i.e.,
the pivotal answer, using an answer selection module, and in the second stage we
encode the answer span in the sentence and use a sequence to sequence model with
a rich set of linguistic features to generate questions for the pivotal answer.

Our sentence encoder transforms the input sentence into a list of fixed-length con-
tinuous vector word representation, each input symbol being represented as a vector.
The question decoder takes in the output from the sentence encoder and produces one
symbol at a time and stops at the EOS (end of sentence) marker. To focus on certain
important words while generating questions (decoding) we use a global attention mech-
anism. The attention module is connected to both the sentence encoder as well as the
question decoder, thus allowing the question decoder to focus on appropriate segments
of the sentence while generating the next word of the question. We include linguistic fea-
tures for words so that the model can learn more generalized syntactic transformations.

We provide a detailed description of these modules in the following sections. Here
is a summary of our three main contributions: (1) a versatile neural network-based
answer selection and Question Generation (QG) approach and an associated dataset
of question/sentence pairs? suitable for learning answer selection, (2) incorporation of
linguistic features that help generalize the learning to syntactic and semantic trans-
formations of the input, and (3) a modified decoder to generate the most relevant
question to the text.

5 Answer Selection and Encoding

In applications such as reading comprehension, it is natural for a question to be
generated keeping the answer in mind (hereafter referred to as the ‘pivotal’ answer).
Identifying the most appropriate pivotal answer will allow comprehension be tested
more easily and with even higher automation. We propose a novel named entity
selection model and answer selection model based on Pointer Networks [19]. These
models give us the span of pivotal answer in the sentence, which we encode using
the BIO notation while generating the questions.

5.1 Named Entity Selection

In our first approach, we restrict pivotal answer to be named entities in the sentence,
extracted using the Stanford CoreNLP toolkit. To choose the most appropriate pivotal
answer for QG from a set of candidate entities present in the sentence we propose
a named entity selection model. We train a multi-layer perceptron on the sentence,
named entities present in the sentence and the ground truth answer. The model learns
to predict the pivotal answer given the sentence and a set of candidate entities. The
sentence S = (wq,ws,...,w,) is first encoded using a 2 layered unidirectional LSTM en-
coder into hidden activations H = (h3,h3,...,h,). For a named entity NE = (wj,...,w;),

a vector representation (R) is created as <hj ks, o, ., >, where hj, is the final
state of the hidden activations, h},.,,, is the mean of all the activations and A7 .,

2 Publicly available at https://goo.gl/Q67cB7.

Automating Reading Comprehension by Generating Question and Answer Pairs 5

is the mean of hidden activations (h] ,...,h;) between the span of the named entity.
This representation vector R is fed into a multi-layer perceptron, which predicts the
probability of a named entity being a pivotal answer. Then we select the entity with
the highest probability as the answer entity. More formally,

P(NE;|S)=softmax(R;.W+DB) (3)

where W is weight, B is bias, and P(NFE;|S) is the probability of named entity being
the pivotal answer.

5.2 Answer Election using Pointer Networks

We propose a novel Pointer Network [19] based approach to find the span of pivotal
answer given a sentence. Using the attention mechanism, a boundary Pointer Network
selects a position from the input sequence as an output symbol. More formally, the
problem can be formulated as follows: given a sentence S, we want to predict the
start index a§*®"* and the end index az”d of the pivotal answer. The main motivation
behind using a boundary pointer network is that we want to predict the span from the
input sequence as output instead from some other sequence (as happens in sequence to
sequence architectures). We adapt it to find the pivotal answer span in a given sentence.
We use boundary pointer network to predict the start and end index positions of pivotal
answer in the sentence but we also present results using the sequence pointer network.
Answer sequence pointer network produces a sequence of pointers as output.
Each pointer in the sequence is word index of some token in the input. It only
ensures that output is contained in the sentence but isn’t necessarily a substring. Let
the encoder’s hidden states be H = (hy,ha,...,h,) for a sentence the probability of
generating output sequence O = (01,02,...,0,,,) is defined as,

P(OlS):HP(Oi|01,02,03,...,Oi,1,H) (4)
‘We model the probability distribution as:
ut =vT tanh(WeH+W4D;) (5)

P(04]01,02,....,0i—1,H) = softmaz(u") (6)

Here, W€ R¥™2d WP c R¥4 e RY are the model parameters to be learned.

His <H ;0>, where a 0 vector is concatenated with LSTM encoder hidden states to
produce an end pointer token. D; is produced by taking the last state of the LSTM
decoder with inputs <so ftmaas(ui)fl ;D;—1>. Dy is a zero vector denoting the start
state of the decoder.
Answer boundary pointer network produces two tokens corresponding to the
start and end index of the answer span. The probability distribution model remains
exactly the same as answer sequence pointer network. The boundary pointer network
is depicted in Figure 2.

We take sentence S = (wq,ws,...,wps) and generate the hidden activations H by
using embedding lookup and an LSTM encoder. As the pointers are not conditioned
over a second sentence, the decoder is fed with just a start state.

6 Automating reading comprehension by generating question and answer pairs

Example: For the Sentence: “other past residents include composer jour-
nalist and newspaper editor william henry wills , ron goodwin , and jour-
nalist angela rippon and comedian dawn french”, the answer pointers produced
are:

Pointer(s) by answer sequence: [6,11,20] — journalist henry rippon
Pointer(s) by answer boundary: [10,12] — william henry wills

Answer End Pointer

Answer Start Pointer ‘
‘ the ﬁ college father }‘_—4 patrick k_—,‘ dillon }—»{ <soa> H o>

Fig. 2: Answer selection using boundary pointer network.

6 Question Generation

After encoding the pivotal answer (prediction of the answer selection module) in
a sentence, we train a sequence to sequence model augmented with a rich set of
linguistic features to generate the question. In sections below we describe our linguistic
features as well as our sequence to sequence model.

6.1 Sequence to Sequence Model

Sequence to sequence models [18] learn to map input sequence (sentence) to an
intermediate fixed length vector representation using an encoder RNN along with
the mapping for translating this vector representation to the output sequence (ques-
tion) using another decoder RNN. Encoder of the sequence to sequence model first
conceptualizes the sentence as a single fixed length vector before passing this along
to the decoder which uses this vector and attention weights to generate the out-
put.

Sentence Encoder: The sentence encoder is realized using a bi-directional LSTM.
In the forward pass, the given sentence along with the linguistic features is fed through
a recurrent activation function recursively till the whole sentence is processed. Using
one LSTM as encoder will capture only the left side sentence dependencies of the
current word being fed. To alleviate this and thus to also capture the right side
dependencies of the sentence for the current word while predicting in the decoder
stage, another LSTM is fed with the sentence in the reverse order. The combination
of both is used as the encoding of the given sentence.

= F (Tt Vhrt) (7)
b= 1 (Vwn+ Vhep+) (5)
. el
hy=g(Uhs+-c) =g(U|[hs,h¢]+c) 9)

The hidden state h; of the sentence encoder is used as the intermediate repre-
sentation of the source sentence at time step ¢ whereas W,V,U € R™*"™ are weights,

Automating Reading Comprehension by Generating Question and Answer Pairs 7

where m is the word embedding dimensionality, n is the number of hidden units, and
wy € RP*T*" ig the weight vector corresponding to feature encoded input at time step ¢.
Attention Mechanism: In the commonly used sequence to sequence model ([18]),
the decoder is directly initialized with intermediate source representation (ﬁt) Whereas
the attention mechanism proposed in [11] suggests using a subset of source hidden
states, giving more emphasis to a, possibly, more relevant part of the context in the
source sentence while predicting a new word in the target sequence. In our method
we specifically use the global attention mechanism. In this mechanism a context
vector ¢; is generated by capturing relevant source side information for predicting
the current target word y; in the decoding phase at time . Relevance between the
current decoder hidden state h; and each of the source hidden states (hl,hg .h N) is
realized through a dot similarity metric: score(ht,h,;) =hl ;.

A softmax layer (10) is applied over these scores to get the variable length align-
ment vector a; which in turn is used to compute the weighted sum over all the source
hidden states (h1,ha,....hn) to generate the context vector ¢; (11) at time ¢.

exp(score(hy,h;)
S exp(score(hy,hir))

ct:Zanﬁi (].1)

Question Decoder: Question decoder is a two layer LSTM network. It takes output
of sentence encoder and decodes it to generate question. The question decoder is
designed to maximize our objective in equation 2. More formally decoder calculates
probability P(Q|S;0) as

oy (i) =align(hy,h;) =

(10)

P(Q|S;0)=softmax(W;(tanh(W,.[hi,ct]+b))) (12)

where W, and W,. are weight vectors and tanh is the activation function. The hidden
state of the decoder along with the context vector ¢; is used to predict the target
word y;. It is a known fact that decoder may output words which are not even present
in the source sentence as it learns a probability distribution over the words in the
vocabulary. To generate questions relevant to the text we suitably modified decoder
and integrated an attention mechanism (described in Section 6.1) with the decoder to
attend to words in source sentence while generating questions. This modification to
the decoder increases the relevance of question generated for a particular sentence.

6.2 Linguistic Features

We propose using a set of linguistic features so that the model can learn better
generalized transformation rules, rather than learning a transformation rule per
sentence. We describe our features below:

POS Tag: Parts of speech tag of the word. Words having same POS tag have
similar grammatical properties and demonstrate similar syntactic behavior. We use
the Stanford ConeNLP -pos annotator to get POS Tag of words in the sentence.
Named Entity Tag: Name entity tag represent coarse grained category of a word
for example PERSON, PLACE, ORGANIZATION, DATE, etc. In order to help the
model identify named entities present in the sentence, named entity tag of each word

8 Automating reading comprehension by generating question and answer pairs

is provided as a feature. This ensures that the model learns to pose a question about
the entities present in the sentence. We use the Stanford CoreNLP -ner annotator
to assign named entity tag to each word.
Dependency Label: Dependency label of a word is the edge label connecting each
word with the parent in the dependency parse tree. Root node of the tree is assigned
label ‘ROOT’. Dependency label help models to learn inter-word relations. It helps
in understanding the semantic structure of the sentence while generating question.
Dependency structure also helps in learning syntactic transformations between sen-
tence and question pair. Verbs and adverbs present in the sentence signify the type of
the question (which, who .. etc.) that would be posed for the subject it refers to. We
use dependency parse trees generated using the Stanford CoreNLP parser to obtain
the dependency labels.

Linguistic features are added by the conventional feature concatenation of tokens
using the delimiter ‘|". We create separate vocabularies for words (encoded using glove’s
pre-trained word embedding) and features (using one-hot encoding) respectively.

7 Implementation Details
We implement our answer selection and question generation models in Torch®. The

sentence encoder of QG is a 3 layer bi-directional LSTM stack and the question
decoder is a 3 layer LSTM stack. Each LSTM has a hidden unit of size 600 units.
we use pre-trained glove embeddings? [14] of 300 dimensions for both the encoder
and the decoder. All model parameters are optimized using Adam optimizer with a
learning rate of 1.0 and we decay the learning rate by 0.5 after 10th epoch of training.
The dropout probability is set to 0.3. We train our model in each experiment for 30
epochs, we select the model with the lowest perplexity on validation set.

The linguistic features for each word such as POS, named entity tag etc., are
incorporated along with word embeddings through concatenation.

8 Experiments and Results

We evaluate performance of our models on the SQUAD [15] dataset (denoted S).
We use the same split as that of [7], where a random subset of 70,484 instances
from S are used for training (S*"), 10,570 instances for validation (S¥®!), and 11,877
instances for testing (S%).

We performed both human-based evaluation as well as automatic evaluation to as-
sess the quality of the questions generated. For automatic evaluation, we report results
using a metric widely used to evaluate machine translation systems, called BLEU [13].

We first list the different systems (models) that we evaluate and compare in our
experiments. A note about abbreviations: Whereas components in blue are differ-
ent alternatives for encoding the pivotal answer, the brown color coded component
represents the set of linguistic features that can be optionally added to any model.
Baseline System (QG): Our baseline system is a sequence-to-sequence LSTM
model (see Section 6) trained only on raw sentence-question pairs without using
features or answer encoding. This model is the same as [7].

System with feature tagged input (QG++F): We encoded linguistic features
(see Section 6.2) for each sentence-question pair to augment the basic QG model. This

3 http://torch.ch/
4 http://nlp.stanford.edu/data/glove.840B.300d.zip

Automating Reading Comprehension by Generating Question and Answer Pairs 9

was achieved by appending features to each word using the delimiter. This model
helps us analyze the isolated effect of incorporating syntactic and semantic properties
of the sentence (and words in the sentence) on the outcome of question generation.
Features + NE encoding (QG+F+NE): We also augmented the feature-
enriched sequence-to-sequence QG+F model by encoding each named entity predicted
by the named entity selection module (see section 5.1) as a pivotal answer. This
model helps us analyze the effect of (indiscriminate) use of named entity as potential
(pivotal) answer, when used in conjunction with features.

Ground truth answer encoding (QG+GAE): In this setting we use the encod-
ing of ground truth answers from sentences to augment the training of the basic QG
model (see Section 5). For encoding answers into the sentence we employ the BIO
notation. We append “B” as a feature using the delimiter “/” to the first word of the
answer and “I” as a feature for the rest of the answer words. We used this model to
analyze the effect of answer encoding on question generation, independent of features
and named entity alignment.

We would like to point out that any direct comparison of a generated question
with the question in the ground truth using any machine translation-like metric
(such as the BLEU metric discussed in Section 8.1) makes sense only when both the
questions are associated with the same pivotal answer. This specific experimental
setup and the ones that follow are therefore more amenable for evaluation using
standard metrics used in machine translation.

Features + sequence pointer network predicted answer encoding (QG+F-+AES):
In this setting, we encoded the pivotal answer in the sentence as predicted by the
sequence pointer network (see Section 5.2) to augment the linguistic feature based
QG+HF model. In this and in the following setting, we expect the prediction of the
pivotal answer in the sentence to closely approximate the ground truth answer.

Features + boundary pointer network predicted answer encoding (QG+F+AEB):
In this setting, we encoded the pivotal answer in the sentence as predicted by the
boundary pointer network (see Section 5.2) to augment the linguistic feature based
QG+F model.

Features + ground truth answer encoding (QG+F+GAE): In this experi-
mental setup, building upon the previous model (QG+F), we encoded ground truth
answers to augment the QG model.

LC|77

8.1 Results and Analysis

We compare the performance of the 7 systems QG, QG+F, QG+F+NE, QG+GAE,
QG+F+AES, QG+F+AEB and QG+F+GAE described in the previous sections on
(the train-val-test splits of) S and report results using both human and automated
evaluation metrics. We first describe experimental results using human evaluation
followed by evaluation on other metrics.

Human Evaluation: We randomly selected 100 sentences from the test set (S)
and generated one question using each of the 7 systems for each of these 100 sentences
and asked three human experts for feedback on the quality of questions generated.
Our human evaluators are professional English language experts. They were asked to
provide feedback about a randomly sampled sentence along with the corresponding
questions from each competing system, presented in an anonymised random order.

10 Automating reading comprehension by generating question and answer pairs

This was to avoid creating any bias in the evaluator towards any particular system.
They were not at all primed about the different models and the hypothesis.

We asked the following binary (yes/no) questions to each of the experts: a) is this
question syntactically correct?, b) is this question semantically correct?, and c) is this
question relevant to this sentence?. Responses from all three experts were collected and
averaged. For example, suppose the cumulative scores of the 100 binary judgements
for syntactic correctness by the 3 evaluators were (80,79,73). Then the average
response would be 77.33. In Table 1 we present these results on the test set S*.

System Syntactically correct (%) Semantically correct (%) Relevant (%)
QG [7] 51.6 48 52.3
QG+F 59.6 57 64.6
QG+F+NE 57 52.6 67
QG+GAE 44 35.3 50.6
QG+F+AES 51 47.3 55.3
QG+F+AEB 61 60.6 71.3
QG+F+GAE 63 61 67

Table 1: Human evaluation results on S*. Parameters are, p1: percentage of syntactically
correct questions, p2: percentage of semantically correct questions, p3: percentage of
relevant questions.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
QG [7] 39.97 22.39 14.39 9.64 14.34 37.04
QG+F 41.89 24.37 15.92 10.74 15.854 37.762
QG+F+NE 41.54 23.77 15.32 10.24 15.906 36.465
QG+GAE 43.35 24.06 14.85 9.40 15.65 37.84
QG+F+AES 43.54 25.69 17.07 11.83 16.71 38.22
QG+F+AEB 42.98 25.65 17.19 12.07 16.72 38.50
QG+F+GAE 46.32 28.81 19.67 13.85 18.51 41.75

Table 2: Automatic evaluation results on S*. BLEU, METEOR and ROUGE-L scores
vary between 0 and 100, with the upper bound of 100 attainable on the ground truth.
QG]7]:Result obtained using latest version of Torch.

Evaluation on other metrics: We also evaluated our system on other standard
metrics to enable comparison with other systems. However, as explained earlier, the
standard metrics used in machine translation such as BLEU [13], METEOR [6], and
ROUGE-L [10], might not be appropriate measures to evaluate the task of question
generation. To appreciate this, consider the candidate question “who was the widow
of mcdonald ’s owner 7”7 against the ground truth “to whom was john b. kroc married
77 for the sentence “it was founded in 1986 through the donations of joan
b. kroc , the widow of mcdonald ’s owner ray kroc.”. It is easy to see that
the candidate is a valid question and makes perfect sense. However its BLEU-4 score
is almost zero. Thus, it may be the case that the human generated question against
which we evaluate the system generated questions may be completely different in
structure and semantics, but still be perfectly valid, as seen previously. While we find

Automating Reading Comprehension by Generating Question and Answer Pairs 11

human evaluation to be more appropriate, for the sake of completeness, we also report
the BLEU, METEOR and ROUGE-L scores in each setting. In Table 2, we observe
that our models, QG+F+AEB, QG+F+AES and QG+F+GAE outperform the
state-of-the art question generation system QG [7] significantly on all standard metrics.

Our model QG+F+GAE, which encodes ground truth answers and uses a rich
set of linguistic features, performs the best as per every metric. And in Table 1, we
observe that adding the rich set of linguistic features to the baseline model (QG)
further improves performance. Specifically, addition of features increases syntactic
correctness of questions by 2%, semantic correctness by 9% and relevance of questions
with respect to sentence by 12.3% in comparison with the baseline model QG [7].

Sentence 1: Manhattan was on track to have an estimated 90,000 hotel rooms at the end of 2014, a 10% increase from
2013.

Answer Predicted: 90000

Question Generated: How many hotel rooms did Manhattan have ?

Sentence 2: American idol premiered in June 2002 and became the surprise summer hit show of 2002.
Answer Predicted: June 2002
Question Generated: When did American idol begin ?

Sentence 3: Shuman then constructed a full-scale steam engine powered by low-pressure water, enabling him
to patent the entire solar engine system by 1912.

Answer Predicted: 1912

Question Generated: When was the solar engine system invented ?

Fig. 3: Sample output: the pivotal answer predicted and the question generated about the
answer using model QG+F+AEB - that is comparable to the best performing system that
also used ground truth answers.

In Figure 3 we present some sample answers predicted and corresponding ques-
tions generated by our model QG+F+AEB. Though not better, the performance
of models QG+F+AES and QG+F+AEB is comparable to the best model (that
is QG+F+GAE, which additionally uses ground truth answers). This is because the
ground truth answer might not be the best and most relevant pivotal answer for ques-
tion generation, particularly since each question in the SQUAD dataset was generated
by looking at an entire paragraph and not any single sentence. Consider the sentence
“manhattan was on track to have an estimated 90,000 hotel rooms at the end of 2014 , a
10 % increase from 2013 .. On encoding the ground truth answer, “90,000” , the ques-
tion generated using model QG+GAE is “what was manhattan estimated hotel rooms
in 2014 27 and and additionally, with linguistic features (QG+F+GAE), we get “how
many hotel rooms did manhattan have at the end of 2014 ?”. This is indicative of how a
rich set of linguistic features help in shaping the correct question type as well generating
syntactically and semantically correct question. Further when we do not encode any an-
swer (either pivotal answer predicted by sequence/boundary pointer network or ground
truth answer) and just augment the linguistic features (QG+F) the question generated
is “what was manhattan s hotel increase in 2013 27, which is clearly a poor quality
question. Thus, both answer encoding and augmenting rich set of linguistic features are
important for generating high quality (syntactically correct, semantically correct and
relevant) questions. When we select pivotal answer from amongst the set of named enti-
ties present in the sentence (i.e., model QG+F+NE), the question generated on encod-
ing the named entity “manhattan” is “what was the 10 of hotel ’s city rooms 27, which
is clearly a poor quality question. The poor performance of QG+F+NE can be at-
tributed to the fact that only 50% of the answers in SQUAD dataset are named entities.

12

9

Automating reading comprehension by generating question and answer pairs

Conclusion

We introduce a novel two-stage process to generate question-answer pairs from text. We
combine and enhance a number of techniques including sequence to sequence models,
Pointer Networks, named entity alignment, as well as rich linguistic features to identify
potential answers from text, handle rare words, and generate questions most relevant to
the answer. To the best of our knowledge this is the first attempt in generating question-
answer pairs. Our comprehensive evaluation shows that our approach significantly out-
performs current state-of-the-art question generation techniques on both human eval-
uation and evaluation on common metrics such as BLEU, METEOR, and ROUGE-L.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

Ali, H., Chali, Y., Hasan, S.A.: Automation of question generation from sentences. In:
3rd Workshop on Question Generation. pp. 58-67 (2010)

Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

Chali, Y., Hasan, S.A.: Towards topic-to-question generation. Computational Linguistics
41(1), 1-20 (2015)

Cho, K., Van Merriénboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural
machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259 (2014)
Copestake, A., Flickinger, D., Sag, I.A., Pollard, C.: Minimal recursion semantics: an
introduction (1999), http://www-csli.stanford.edu/~sag/sag.html, draft
Denkowski, M., Lavie, A.: Meteor universal: Language specific translation evaluation for
any target language. In: EACL 2014 Workshop on Statistical Machine Translation (2014)
Du, X., Shao, J., Cardie, C.: Learning to ask: Neural question generation for reading
comprehension. In: 55th Annual Meeting of the ACL. vol. 1, pp. 1342-1352 (2017)
Eriguchi, A., Hashimoto, K., Tsuruoka, Y.: Tree-to-sequence attentional neural machine
translation. CoRR abs/1603.06075 (2016), http://arxiv.org/abs/1603.06075
Heilman, M., Smith, N.A.: Good question! statistical ranking for question generation.
In: HLT-NAACL 2010. pp. 609-617. Association for Computational Linguistics (2010)
Lin, C.Y.: Rouge: A package for automatic evaluation of summaries. In: ACL-04
Workshop on Text Summarization Branches Out. pp. 74-81. ACL (2004)

Luong, M., Pham, H., Manning, C.D.: Effective approaches to attention-based neural ma-
chine translation. CoRR abs/1508.04025 (2015), http://arxiv.org/abs/1508.04025
Mannem, P., Prasad, R., Joshi, A.: Question generation from paragraphs at upenn:
Qgstec system description. In: 3rd Workshop on Question Generation. pp. 84-91 (2010)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation
of machine translation. In: 40th annual meeting of the ACL. pp. 311-318. ACL (2002)
Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation.
In: Empirical Methods in Natural Language Processing (EMNLP). pp. 1532-1543 (2014)
Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine
comprehension of text. arXiv preprint arXiv:1606.05250 (2016)

Sennrich, R., Haddow, B.: Linguistic input features improve neural machine translation.
CoRR abs/1606.02892 (2016), http://arxiv.org/abs/1606.02892

Serban, 1.V. et al: Generating factoid questions with recurrent neural networks: The
30m factoid question-answer corpus. arXiv preprint arXiv:1603.06807 (2016)
Sutskever, 1., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks.
In: Advances in neural information processing systems. pp. 3104-3112 (2014)

Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: NIPS. pp. 2692-2700 (2015)
Yao, X., Bouma, G., Zhang, Y.: Semantics-based question generation and implementation.
Dialogue and Discourse, Special Issue on Question Generation 3(2), 11-42 (2012)

