Extracting Permission-based Specifications
from a Sequential Java Program

Ayesha Sadiq*, Yuan-Fang Li*, Sea Ling* and Ijaz Ahmed'
* Faculty of Information Technology
Monash University, Victoria, Australia.
{ayesha.sadiq, yuanfang.li, chris.ling} @monash.edu
" Department of Computer and Information Science
Dubai Women College, Higher College Technology, United Arab Emirates
iahmed2 @hct.ac.ae

Abstract—It is expected that muti-core systems will
become the dominant computing platform in the next few
years. However, the current programming models (such as
Java, .Net etc.) do not scale well to exploit the computing
power of such multi-core systems. In primitive program-
ming paradigms there exist implicit dependencies between
code and proram states, and compilers cannot exploit the
potential concurrency present in the program unless the
programmer introduces concurrency manually using multi-
threading, which is prone to errors such as race condi-
tions and deadlocks. The goal of this research is to help
programmers achieve concurrency without mastering the
intricacies of this domain. We propose a formal technique
and a high-level algorithm to extract implicit dependencies
from a sequential Java program in the form of access
permission rights. The proposed technique performs static
analysis of the source code on a modular basis. The inferred
permissions can potentially be used by runtime engines
such as Java Virtual Machine (JVM) to automatically
parallelize sequential programs on multi-core systems and
to reason about concurrency.

Keywords-access permissions, static analysis, concur-
rency, permission inference.

I. INTRODUCTION

In primitive programming models, there exist implicit
dependencies between code and shared resources, which
means two methods might be dependent on the same
mutable (shared) state without the caller knowing about
it. Consequently, this information is not revealed to the
compiler and programs are not able to exploit poten-
tial concurrency present in the system. Writing concur-
rent applications is a challenging task for programmers
because of thread interleaving and heap interference.
Therefore, there is a need for qualified tools and tech-
niques to address these issues. Our aim is to exploit
implicit concurrency present in a source program.

To help a programmer to reason about concurrency, a
number of abstractions have been developed. One such

abstraction is called access permission [1] which enables
a reference to modify (or read) a referenced object in
the presence (or absence) of alias(es). There are five
different kinds of access permissions for a particular
reference x i.e. Unique(x), Full(x), Share(x), Pure(x),
Immutable(x). Access permission is a novel way to
express implicit dependencies in a program, and it has
been used to address issues related to safe concurrency
[2].

Unlike previous approaches [3][4][5] that try to ex-
ploit implicit concurrency but require manual program
annotation, our technique will free programmers from
specification overhead. It will help programmers to write
concurrent applications without mastering the semantics
and intricacies of a new concurrent paradigms.

In our previous work [6] we used access permissions
to ensure the integrity of permission-based specifications
using an already annotated program. In this paper, we
propose a formal technique called GAP (Generating
Access Permissions) and a high-level algorithm to infer
permission-based specifications from a sequential Java
program. We develop rules for graph construction and
permission inference to extract permission-based de-
pendencies from the source code. The inferred access
permissions can potentially be used by runtime machines
such as Java Virtual Machine (JVM) to parallelize se-
quential programs automatically.

II. METHODOLOGY

The basic idea is to perform static analysis of source
code on a modular basis. First we parse the method
statements one by one and extract the required informa-
tion. A directed graph (defined in Section II-A) is then
constructed from this information using graph construc-
tion rules given in Section II-B. One graph is generated
for each method. Access permissions are then generated

A. Graph Notations, Concepts and Conventions

The proposed methodology uses some special nodes
(foo, context) and directed edges (read and write)
to represent the extracted information in the form of a
graph, such as Figures 5 to 9.

In these graphs, a circle denotes a referenced object
(<var>) representing a class variable, parameter or local
variable. A rectangle is either foo (the current method
accessing the referenced object or context (other
method to the referenced object). A dashed arrow is a
readEdge denoting a read behaviour on the referenced
object and a straight arrow is a writeEdge denoting
the referenced object being modified.

We can safely assume three possible contexts
(Context R or Context RW, Context N) at any
moment according to the access (read, write and no
access) by other references. The kind of access permis-
sions generated in each context depends on the question
whether foo (This Reference) modifies the referenced
object (<var>).

B. Graph Construction Rules

The graph construction rules can be categorised into
Context, Method Call and Statement rules (Figure 1, 2)
and 3. The Method Call rules describe the ways to add
edges according to the post permissions generated for a
referenced variable by a called method.

<var>

(Context-N)

<var>

(Context-R)

addreadEdge (<var>, context)
<var>

(Context-RW)
addreadEdge (<var>, context)addwriteEdge (context,<var>)

Fig. 1. Context Rules.

MethodCall (immutable (<var>))

(Imm-M-Call)
addreadEdge (<var>, foo) addwriteEdge(<var>, context)
MethodCall (pure(<var>))
(Pure-M-Call)
addreadEdge (<var>, foo) addwriteEdge(context, <var>)
MethodCall (full(<var>))
(Full-M-Call)

addwriteEdge (foo, <var>) addreadEdge(<var>, context)
MethodCall (share(<var>))

(Share-M-Call)
addwriteEdge (foo,<var>) addwriteEdge(context,<var>)

MethodCall (unique (<var>))
(Unique-M-Call)

addwriteEdge (foo, <var>)

Fig. 2. Method Call Rules.

Access permission inference rules are given in Figure
4. The type of access permission generated depends on
the type of edges and presence (or absence) of edges
between the referenced object <var> and the method
accessing it.

D. Inferring Access Permissions: a High-level Algorithm

A high-level algorithm to infer access permissions
starts by creating a set Z which consists of all
the class variables (<var>) accessed by the cur-
rent method (foo), method parameters (<param>)
and special nodes called foo and context such
that.

Z = {<var>i,<var>s,<var>s,..,<var>,} U

{<param>;,<param>,, <param>s, ..., <param>, jU

{foo, context }.

Step 1: Create graph nodes for all elements of set Z.

Step 2: Choose the required context and add edges

according to context rules (Figure 1).

Step 3: Assuming that every referenced object of set

Z is to be read by foo, add edges according to the

Read-Only rule (Figure 3).

Step 4: Parse the statements one by one and add edges

following graph construction rules (Figure 2 and 3).

Step 5: Traverse the constructed graph to generate

access permissions using access permission inference

rules(Figure 4).

III. A WORKING EXAMPLE

We apply our methodology to a sample Java program
shown in Listing III-1. Two types of access permission
are generated for each method, one for Context R
whereas the other for Context RW.

_Listing 1II-1. A sample Java Program.

1 class Box{

2 static Integer([] coll;

3 public static void createColl() {

4 coll = new Integer([10];}

5 public static void printColl (Integer[] coll) {
6 for (int i=0; i< coll.length;i++)
7
8
9

System.out.println(+coll[i]);}

public static void IncrColl (Integer[] coll,int x) {
for (int i=0; 1 < coll.length; i++)
10 coll[i]=coll[i]+x;}
11 public static void main (String[] args) {
12 Box.createColl();
13 Box.printColl (coll); }}
14 Box.IncrColl (coll);

Figure 5 elaborates the step-by-step construction of
the graph for the method createColl ().

<Type> <var>

<var>

addreadEdge (<var>, foo)

(Variable-Declaration)

(Read-Only)

<var> = <value>/<MethodCall(<var1>)>/<Expression>

(Value-Flow)

<var> = new<Type>

addwriteEdge (foo, <var>) Va e Aliasof(<var >) addaliasEdge(foo, a)

(New-Object)

addwriteEdge(foo, <var>)addreadEdge(<var>, foo)removewriteEdge(context, <var>)removereadEdge(<var>, context))

Fig. 3. Statement Rules.

—JreadEdge (<var>, context) A-JwriteEdge (context,<var>) AdreadEdge<var>,foo) A JwriteEdge(foo,<var>)A -JaliasEdge(<var>)

(Unique)

Unique (<var>)

—JwriteEdge(context, <var>) A —JwriteEdge(foo, <var>) A JreadEdge(<var>, foo)A3JreadEdge(<var>, context)

(Immutable)

Immutable (<var>)

—JuriteEdge(context, <var>) A JuriteEdge(foo, <var>) A JreadEdge(<var>, context)

(Full)

Full (<var>)

JuriteEdge(context, <var>) A JuwriteEdge(foo, <var>) A JreadEdge(<var>, context)A 3JreadEdge(<var>, foo)

(Share)

Share (<var>)

JuriteEdge(context, <var>) A -3JuriteEdge(foo, <var>) A dJreadEdge(<var>, context)

(Pure)

Pure (<var>)

Fig. 4. Permission Inference Rules.

foo *| Context R

Step 2

> @ Context R

Step 4

foo Context

Step 1

foo |« »| Context R

Step 3

foo |«

Fig. 5. Graph construction for the method createColl () in
Context R

The graph of method createColl () would be
the same in Context R and Context RW (Figure
6) as there does not exist any context (represented as
Context N) for the referenced variable coll at the
time of object creation.

gontexth
.

Fig. 6. Graph for the method createColl () in Context
Rand Context RW.

Following Step 5, we traverse the graph to generate
the possible access permission. Let us start from Pure
access permission. The one condition for Pure access
permission says that there should be an edge from the

context node to the coll node; as there is no edge
from context to coll node, the access permission
cannot be Pure. Now we check for Unique access
permission, the one condition of the Unique rule states
that there should not be an edge between coll and
context; as there is no edge from coll to context
node, so the algorithm generates a Unique access per-
mission for collection coll.

Figure 7 shows the graph generated for the method
printColl(coll) in Context R and Context
RW. The algorithm ignores the state changes for
local variables such as line for (int i=0; i<
coll.length; i++) that only changes the loop state.

“ ’* 4 - Tff’i’:
(a) ®)

Fig. 7. Graph for the method printColl (coll) in
Context Rand Context RW.

In Context R, algorithm generates an Immutable
permission for the referenced variable coll and a
Pure(coll) permission in Context RW. Figure 8

4

represents a graph for the method IncrColl () in
Context R and Context RW. The algorithm gen-
erates Full(coll) permissions in Context R and
Share(col1l) permissions in Context RW.

Context . Context
> R ‘ foo |« > RW

(a) (b)

foo

Fig. 8. Graph for the method IncrColl (coll) in
Context Rand Context RW.

Figure 9 shows the graph generated for the main ()
method using Method Call rules. The main method does
not require any permission to start its execution and it
is not dependent on any context.

=

Fig. 9. Graph for the main () method having nested method calls.

The algorithm generates Unique(col1l) permissions.
We can parallelize the execution of main () method if
we can track the access permissions on the referenced
objects.

IV. RELATED WORK

Ferrara et al. [3] presented a technique to infer permis-
sion based specification from a Chalice program [7]. This
technique uses symbolic values (annotations) to repre-
sent access permissions in the system and performs heap
analysis of the code to infer dependency information.
We perform static analysis of the source code and our
technique does not pose a second level annotation (sym-
bolic values) overhead on the programmer. Aminium [4]
is a concurrency by default programming paradigm that
aims to develop massively concurrent applications. In
ZAminium , programmers manually add permission based
specifications in the program to control the dependency
information between operations. Our technique automat-
ically extracts permission based specification from a
sequential program. It will reduce the specification over-
head that Aminium approach poses to the programmer to
synchronizing the shared data. Haskell [5], a functional
programming language uses I/O monad to parallelize the
execution of methods to avoid race-conditions but only
one permission is used for the whole system and will
create a bottleneck for highly concurrent applications.
Unlike Haskell, our technique can specify the exact state
and permitted operations associated with a certain object.
A tool named Daikon [8] performs dynamic analysis of
a concurrent program to infer likely specifications based

on invariants. This technique uses access permissions
to verify the correctness of a already concurrent pro-
gram. Unlike Daikon, our technique automatically infers
permission based specifications from a sequential Java
program.

V. DISCUSSION AND FUTURE WORK

In this paper we propose a method of automatically
inferring, from sequential Java programs, access per-
missions, which can be eventually used to parallelise
such sequential programs. Our technique consists of
three main tasks: parsing, graph construction and graph
traversal. The graph construction and traversal rules
have been formally defined to avoid ambiguity. Graph
traversal is simple and computationally efficient as it
does not involve any cycles or expensive steps like
backtracking. For future work, we plan to (a) verify
the correctness of our inferred permission; (b) extend
our analysis to incorporate alias control information; and
(c) implement a technique to automatically parallelize a
sequential program based on the access permissions.

REFERENCES

[1] J. Boyland, Checking Interference with Fractional Permissions.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 55-72.

[2] N. Catafio, I. Ahmed, R. I. Siminiceanu, and J. Aldrich, “A case
study on the lightweight verification of a multi-threaded task
server,” Sci. Comput. Program., vol. 80, pp. 169-187, 2014.

[3] P. Ferrara and P. Miiller, “Automatic inference of access permis-
sions,” in International Workshop on Verification, Model Checking,
and Abstract Interpretation. Springer, 2012, pp. 202-218.

[4] S. Stork, K. Naden, J. Sunshine, M. Mohr, A. Fonseca, P. Marques,
and J. Aldrich, “Aminium : A permission-based concurrent-by-
default programming language approach,” ACM Trans. Program.
Lang. Syst., vol. 36, no. 1, pp. 142, 2014.

[5]1 S. P. Jones, Haskell 98 language and libraries: the revised report.
Cambridge University Press, 2003.

[6] R. I. Siminiceanu, I. Ahmed, and N. Catafio, “Automated verifi-
cation of specifications with typestates and access permissions,”
ECEASST, vol. 53, 2012.

[7] K. R. M. Leino, P. Miiller, and J. Smans, “Verification of concur-
rent programs with chalice,” in Foundations of Security Analysis
and Design V. Springer, 2009, pp. 195-222.

[8] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco,
M. S. Tschantz, and C. Xiao, “The daikon system for dynamic
detection of likely invariants,” Sci. Comput. Program., vol. 69, no.
1-3, pp. 3545, Dec. 2007.

