
Access Permission-based Program Verification: A survey1

Ayesha Sadiq∗, Yuan-Fang Li∗, Sea Ling∗2

Faculty of Information Technology, Monash University, Clayton, Australia3

Abstract4

Verifying the correctness and reliability of imperative and object-oriented5

programs is one of the grand challenges in computer science. In imperative6

programming models, programmers introduce concurrency manually by us-7

ing explicit concurrency constructs such as multi-threading. Multi-threaded8

programs are prone to synchronization problems such as data races and dead-9

locks, and verifying API protocols in object-oriented programs is a non-trivial10

task due to the improper and unexpected state transition at run-time. This11

is in part due to the unwanted sharing of program states in such programs.12

With these considerations in mind, access permissions have been investigated13

as a means to reasoning about the correctness of such programs. Access per-14

missions are abstract capabilities that characterize the way a shared resource15

can be accessed by multiple references.16

This paper provides a comprehensive survey of existing access permission-17

based verification approaches. We describe different categories of permissions18

and permission-based contracts. We elaborate how permission-based speci-19

fications have been used to ensure compliance of API protocols and to avoid20

synchronization problems in concurrent programs. We compare existing ap-21

proaches based on permission usage, analysis performed, language and/or22

tool supported, and properties being verified. Finally, we provide insight23

into the research challenges posed by existing approaches and suggest future24

directions.25

Keywords: Access permissions, program verification, concurrency, protocol26

verification, permission inference, survey27

∗Corresponding author
Email addresses: ayesha.sadiq@monash.edu (Ayesha Sadiq),

yuanfang.li@monash.edu (Yuan-Fang Li), chris.ling@monash.edu (Sea Ling)

Preprint submitted to The Journal of Systems and Software August 12, 2019

1. Introduction28

Correctness and reliability of software programs written in imperative and29

object-oriented languages such as Java and C++ have always been a major30

challenge for the IT industry. This is because of the implicit dependencies31

that exist between the code and the program states. In imperative programs32

different program parts may access the same mutable state, without expos-33

ing this information to each other and, consequently, may cause unwanted34

interference or inconstant states. Preventing such errors is important to35

ensure the compliance of API (Application Programming Interface) proto-36

cols in object-oriented programs and to verify the correctness of increasingly37

ubiquitous multi-threaded applications.38

Modern object-oriented programs are highly reliant on reusable APIs that39

often define usage protocols i.e., the desired sequence of method calls that40

API clients must follow for underlying objects to work properly. Typestates41

(Strom and Yemini, 1986) have been designed to specify usage protocols and42

verify their behavior. A typestate abstractly defines an object’s state at ex-43

ecution time. However, statically tracking object state is a non-trivial task44

because of unexpected transitions between states during program execution.45

In multi-threaded programs, managing synchronization between threads is46

a complicated and challenging task for programmers due to thread inter-47

leaving and heap interference, which can lead to concurrency problems such48

as deadlocks, data races. The situation becomes worse in the presence of49

unrestricted aliasing, the hallmark feature of imperative and object-oriented50

languages (Bierhoff et al., 2009b).51

Earlier work on verifying correctness of sequential programs dates back52

to Hoare’s logic (Hoare, 1969) that defines a set of axioms (calculus) and53

formal inference rules to specify and verify desired properties and static anal-54

ysis techniques such as (Floyd, 1967). Handling thread non-interference for55

Java-like concurrent programs dates back to Owicki-Gries’ axiomatic method,56

(Owicki and Gries, 1976), and Jones’ rely-guarantee principle (Jones, 1983).57

These approaches are considered the traditional and general ways of perform-58

ing shared-memory program verification. Since the seminal work of Hoare59

(Hoare, 1969) and Floyd (Floyd, 1967), many logic-based verification ap-60

proaches and type-effect systems have been developed to avoid problems such61

as data races, deadlocks, atomicity violations in shared-memory programs.62

The commonly used verification approaches either perform deductive ver-63

ification or employ theorem proving techniques where formal correctness64

2

proofs are used to verify program properties based on the input specifications65

(Huisman, 2001; Flanagan et al., 2003; Abadi et al., 2006; OHearn, 2007; Vil-66

lard et al., 2010; Caires and Seco, 2013). Others conduct dynamic analysis of67

the input program through model checking (Visser et al., 2003; Chaki et al.,68

2004; Chaki and Gurfinkel, 2018) or perform static analysis (Boyapati et al.,69

2002; Engler and Ashcraft, 2003; Voung et al., 2007; Naik et al., 2009; Dias70

et al., 2013) to approximate runtime behavior of the program to verify its71

correctness.72

However, in the last decades, static contract checking based on Hoare73

logic and the development of advanced, simplified, automated program veri-74

fiers (Fähndrich and Logozzo, 2011; Pradel et al., 2012; Fillitre and Paskevich,75

2013; Carr et al., 2017) had been an active areas of research for the verifica-76

tion of program behavior. Although these approaches are usable and quite77

promising, the support for concurrency and aliasing is limited. As most of the78

real-world applications are inherently multi-threaded, the next step was to79

develop tools and techniques that can reason about shared-memory programs80

and control aliasing in a sound and efficient way. With these considerations in81

mind, permission-based program logics and tools became influential because82

of their practicality, expressiveness and strong reasoning power to handle83

both aliasing and concurrency.84

Access permission, formally called Boyland’s fractional permission (Boy-85

land, 2003), is a formalism inspired by Linear Logic (Girard, 1987) and Sep-86

aration Logic (O’Hearn et al., 2001; Reynolds, 2002). The former treats per-87

missions as linear resources and the latter simplifies the specifications and88

verification of shared-memory programs in an efficient way. Fractional per-89

missions were originally proposed to verify non-interference of the program90

states in parallel programs, using either read or write accesses on the refer-91

enced objects. The formalism was later extended by Bornat et al. (2005) to92

allow read sharing of the shared program states. Bierhoff and Aldrich (2007)93

extended fractional permissions as symbolic permissions to model both the94

read/write operations and aliasing information of a program state at one95

place.96

A study of the literature shows that access permissions have been in-97

vestigated to address different concerns related to security, concurrency, and98

protocol verification. Notable threads of research include Plural (Bierhoff and99

Aldrich, 2007, 2008; Beckman, 2009), Chalice (Leino et al., 2009; Leino and100

Müller, 2009), VeriFast (Jacobs et al., 2011), VPerm (Le et al., 2012), Pulse101

(Siminiceanu et al., 2012), Sample (Ferrara and Müller, 2012), Plaid (Aldrich102

3

et al., 2012), Æminium (Stork et al., 2014), VerCors (Amighi et al., 2012,103

2014), and Viper (Müller et al., 2017), to name a few.104

This survey summarizes the pragmatics of different access permission105

sharing and accounting models, discussed in detail in Section 3 and 5.1,106

that have been used in the literature to verify the correctness and behav-107

ior of sequential and concurrent programs, based on access permissions. To108

the best of our knowledge, this survey is the first attempt to provide read-109

ers a comprehensive overview of existing access permission-based verification110

approaches and tools since their introduction.111

We categorize the research work covered in this survey along the following112

three dimensions:113

1. Verification of API protocols in typestate-based sequential and concur-114

rent programs.115

2. Verification of common concurrency problems such as race conditions116

and deadlock etc., in concurrent (multi-threaded) programs.117

3. Automatic inference of access permissions for sequential and concurrent118

programs.119

Within each of the above categories, the existing approaches are compared120

and contrasted based on the following criteria:121

• The type of underlying program (Prog) such as sequential or concurrent122

program.123

• The programming language (Language) used or developed as a speci-124

fication language.125

• The realization of the proposed technique in the form of a tool (Tool126

).127

• The type of analysis (Analysis) i.e. static or dynamic performed.128

• The kind of permission abstraction (Perm-Kind) such as fractional,129

counting or symbolic permissions, supported as a part of specifications.130

• The access notations or contracts (Perm-Specs) specified as program131

annotations.132

• The permissions or access notations (Perm-Infer) inferred.133

4

• The annotation overhead (Anno) (if any) posed by the approach.134

• The functional or behavioral properties (Properties) verified, based135

on the permission-based specifications.136

Section 2 briefly discusses the related formal theories and type systems in137

the literature as seminal and background work to program verification. Sec-138

tion 3 provides an overview of access permissions. Sections 4, 5, 6 covers the139

three categories of the state of access permission-based program verification,140

mentioned previously. We elaborate some approaches with sample code snip-141

pets to show how different types of access permissions are manually added142

in the program to specify design intents and verify program behavior gainst143

specifications. The objective is to analyze the annotation overhead posed by144

these approaches. Table ?? provides the more detailed statistics, in terms145

of annotation overhead, of the existing approaches from the surveyed papers146

where possible. Further, in every section, a brief summary of the studies work147

in chronological order (where possible), following the above mentioned crite-148

ria, is given in tabular form. Finally, Section 7 provides an insight into the149

use of access permission-based specifications, the research challenges posed150

by the existing approaches and suggest future research directions.151

2. Related Formalisms to Program Verification and Parallelization152

This section briefly presents other formal type theories for program veri-153

fication and parallelization. A type system can verify the desired interaction154

between system components as types can classify program entities and the155

permissible results of the computations. The beauty of type systems is the156

assurance that if a program is type-checked then it is guaranteed to be free157

from errors.158

Earlier work on type systems mainly focused on the results of a com-159

putation in a program in terms of its correctness. Then the study of type160

discipline and concurrency theory inspired the development of formal type161

systems that can statically formulate and verify the intended properties of a162

program behavior, along with the permissible results of the computations.163

Behavioral Type164

Behavioral type theory is one such formalism that was originally proposed165

to verify concurrent programs based on process algebra (Nielson and Nielson,166

5

1993, 1996). A behavioural type system uses behavioral types, a type-based167

abstraction, to formally describe the software entities such as communication168

protocols, interfaces, web services and contracts, as a sequence of operations169

in a concurrent and distributed environment. Formally speaking, a behav-170

ioral type system is a compositional type system that can directly model171

the interaction between system components as a notion of choice, causality172

and resource usage. Session types and behavioural contracts are two notions173

related to behavioural types.174

Since the introduction of behavioral types, many type-based effect and175

proof systems, using the concepts of behavioural types, session types, spatial176

logic and processes as types, have been developed to study various correctness177

and behavioral properties such as unique receptiveness, race freedom, dead-178

locks, livelocks in large-scale concurrent and distributed systems (Sangiorgi,179

1999; Chaki et al., 2002; Igarashi and Kobayashi, 2005; Dezani-Ciancaglini180

et al., 2005; Kobayashi and Sangiorgi, 2010). However, in these approaches,181

type-based specifications are explicitly added to the model and verify the182

usage patterns of resources and communication objects. The behavioral183

type theory then subsequently integrated with session types (Igarashi and184

Kobayashi, 2001; Chaki et al., 2002; Igarashi and Kobayashi, 2005; Dezani-185

Ciancaglini et al., 2005) where type-based specifications are explicitly added186

to model and verify the usage patterns of communication objects in concur-187

rent and distributed environment.188

Recent work on behavioral separation in a distributed environment can be189

attributed to Caires (2008) who developed a spatial-behavioural typing sys-190

tem, to model the resource independence and synchronization in a distributed191

(concurrent) environment, based on the Spatial logic (Caires and Cardelli,192

2003, 2002). The type system using parallel and sequential composition op-193

erators and resource ownership are handled using the type modality. Later,194

Caires and Seco (2013) developed a behavioral separation programming lan-195

guage based on λ-calculus to ensure the disciplined interference between re-196

sources in higher-order concurrent programs having fork/join parallelism.197

The language is based on the behavioral type systems (Honda et al., 1998;198

Chaki et al., 2002) that incorporates a behavioral view of the program prop-199

erties and employs Concurrent Separation Logic (Reynolds, 2002; OHearn,200

2007), to separate the dynamic behavior of run-time values rather than sepa-201

rating program states itself. However, program effects are computed based on202

the explicitly specified assertions to ensure the safety of concurrent programs.203

A detailed study of behavioral type systems and related methodologies can204

6

be found in Ancona et al. (2016).205

Session Type206

Session type, a notion of behavioral types, was originally introduced by207

Honda et al. (1998) to ensure the disciplined interaction between two partners208

in a distributed environment and later extended in the work of Honda (Honda209

et al., 2008) to incorporate the arbitrary number of participants in the same210

environment.211

Recently, session types were extended with formal type system to control212

aliasing and to enforce usage protocols in a concurrent environment for Java213

and Java-like languages, such as SessionJ (Hu et al., 2008, 2010), Yak (Milito214

and Caires, 2009) and Mungo (Gay et al., 2015a), to name a few. Further,215

the linearity of resources is an important and recurring theme in concurrency216

that studies behavioral type systems, for process calculi and as mentioned217

by Honda (1993), Linear Logic can be considered as a source of inspiration218

for some aspects of session types.219

Recent work on Linear Logic-based session types includes the work of220

Caires and Pfenning (2010), who proposed a Curry-Howard style interpreta-221

tion of binary session types in intuitionistic Linear Logic, to expose a deep222

relationship between both concepts. Recently, with this line of work, Gay223

and Vasconcelos (2010) and Wadler (2014) developed a new calculus CP and224

a linear functional language GV, to establish a connection between session225

types and the Linear Logic, that can yield a process calculus, free from data226

races and deadlocks. A comprehensive study of program verification ap-227

proaches based on the session and behavioral types can be found in (Hüttel228

et al., 2016).229

Typestate230

Yet another important formalism, a notion of behavioural types, is type-231

state. Typestate was first defined by Strom and Yemini (1986) as a new232

programming language concept that determines the operations permitted on233

objects in a given context. According to Garcia et al. (2014) “typestate re-234

flects how legal operations on objects can change at run-time as their internal235

state changes”. Typestate associates state information with a variable of a236

given type, which is then subsequently used to decide the valid operations to237

be called on an instance of that type. Typestate is suitable to represent re-238

sources that follow state transition systems that follow the ‘open then close’239

7

semantics. For example, a database connection can only execute a database240

command if it is in the open state.241

Typestates were originally developed for imperative languages without242

the notion of objects, but later extended with the behavioural-type discipline,243

to support verification of object-oriented languages such as Vault (DeLine244

and Fähndrich, 2002), Fugue (DeLine and Fähndrich, 2004). Furthermore,245

typestates were integrated as a first-class language construct in typestate-246

oriented language (Aldrich et al., 2009; Sunshine et al., 2011) to verify the247

correctness of the usage protocols in state-based sequential programs. In the248

new language, objects are being modeled not only as classes, but also the249

changing abstract states, where the correctness of the program is determined250

by tracking state transitions between different objects at execution time,251

thereby ensuring the correct usage of protocols. Later, the typestate-oriented252

programming led the development of a gradual typestate system (Garcia253

et al., 2014) that integrates access permissions with gradual types (Siek and254

Taha, 2007) to control aliasing in a more robust way.255

Recent developments in state-based protocol checking and verification in-256

cludes approaches (Caires and Seco, 2013; Garcia et al., 2014; Militão et al.,257

2014b; Gay et al., 2015b), that handle aliasing in a more robust way and ver-258

ify communication protocols in distributed and concurrent object-oriented259

languages. These approaches ensure the basic memory safety conservatively,260

by associating typestate invariants with each referenced location and by en-261

suring that the type invariants hold for every store of this location. However,262

all the approaches discussed above focus on identifying violations of protocols263

but none of them check the higher-level (behavioral) characteristics of the264

protocols themselves, for example, their usage in practice and the complex-265

ity associated with their definition, that are vital in verifying correctness of266

many program properties (Beckman et al., 2011).267

Ownership Type268

Another stream of type-based systems is ownership type, a mechanism to269

express the sharing of program references (Noble et al., 1998; Clarke et al.,270

2013), in the way that allows controlled aliasing between objects by mitigat-271

ing the undesirable effects to other objects.272

Since its introduction, ownership types have been used in many formal ap-273

proaches to provide safe aliasing control mechanisms (Boyapati and Rinard,274

2001; Clarke and Wrigstad, 2003; Müller and Rudich, 2007; Cohen et al.,275

2009), and to control object deallocation explicitly (Matsakis et al., 2014).276

8

However, in ownership-based verification approaches, programmers explic-277

itly define ownership invariants as locking or access information to specify278

dependencies at the object level and use this information to avoid data races.279

A complete stream of research on ownership types can be found in the work280

of Clarke et al. (2013).281

Atomic Set282

Atomic sets have been used to detect atomicity violation and to avoid283

data races in concurrent programs. An atomic set defines a set of memory284

locations that share some consistency property and needs to be updated285

atomically. The atomic set can be viewed as a generalization of Hoare’s286

monitors (Hoare, 1974) to multiple objects. They can be better integrated287

into the Java language.288

Earlier work using atomic sets dates back to Vaziri et al. (2006)’s data cen-289

tric programming model that defines atomic set serializability. Atomic290

set serializability is a disciplined interference criterion to avoid the problem-291

atic interleaving scenarios in the shared-memory programs based on atomic292

sets. Vaziri extended his previous work to support multiple object inter-293

ference (Vaziri et al., 2010). Subsequent work used atomic sets to detect294

atomicity violation statically (Kidd et al., 2011) and dynamically (Xu et al.,295

2005; Hammer et al., 2008; Lai et al., 2010). The trend is followed by many296

local data-centric concurrency control mechanism and type systems (Dolby297

et al., 2012; Marino et al., 2013), to verify program behavior based on atomic298

sets.299

Data-centric concurrency control is one alternative to the explicit locking300

mechanism. In contrast to the control-centric synchronization approaches,301

(Artho et al., 2003; Lu et al., 2008), where each program instruction is pro-302

tected by synchronization constraints and then changes to the program states303

are tracked for every execution path of the program flow. The local data-304

centric approaches combine all fields of an object that require consistency,305

for all the control flow paths of program execution, into an atomic set and306

updates them atomically to avoid data races.307

Contrary to data-centric concurrency control and the use of atomic sets,308

the development of type systems (Flanagan et al., 2003; Abadi et al., 2006;309

Flanagan et al., 2008) has been influential to ensure the atomicity and data-310

race freedom in concurrent programs, and to reduce the annotation overhead311

associated with manually adding synchronization primitives at code level.312

However, unlike atomic sets, in type systems, programmers provide explicit313

9

synchronization primitives, as locking and guarded specifications at field or314

class level, required by the code.315

Recently, the notion of atomic sets was replaced by atomic variables by316

Paulino et al. (2016). The objective was to handle the complexity asso-317

ciated with the use of memory structures in atomic sets. The proposed318

approach applies a resource-centered view of the data-centric concurrency319

control. However, in the proposed type system, programmers explicitly de-320

fine the synchronization primitives on the individual data items that require321

atomic updates, to guarantee the progress of synchronization for all program322

execution scenarios.323

Uniqueness and Immutability324

Another area of interest has been the controlled sharing and interference325

of object references in imperative object-oriented programs. Sharing is a326

situation when a piece of memory is accessed by more than one reference,327

say x and y, so that a change to x affects y as well. Therefore, changes to one328

object may leave other objects in an inconsistent state, causing unwanted329

interference and subsequently, data races.330

Work has been done to restrict the usage of references notably using331

access-based type annotations such as uniqueness, immutability and read-only332

(Clarke and Wrigstad, 2003; Boyland, 2006, 2010; Gordon et al., 2012; Cleb-333

sch et al., 2015). The objective was to identify isolated states that can be334

safely handled by one or more threads, thereby avoiding the unwanted inter-335

ference and alternatively data races. However, the type system infers sharing336

effects such as uniqueness and immutability for the object references by337

computing an equivalence relationship for a set of free variables by evaluating338

the input expression. The inferred effects are then used to determine which339

part of the code can be safely shared between multiple threads to maintain340

the integrity of the data.341

Recent development in this area is the Giannini’s type and effect sys-342

tem (Giannini et al., 2018a,b) that expresses sharing in imperative programs343

based on the pure calculus (Capriccioli et al., 2016), where memory stores344

are modeled by rewriting the source code terms rather than by modifying345

the auxiliary storage.346

Rely-guarantee Protocols347

The logic-based program verification that employs rely-guarantee reason-348

ing has been another active area of research that verifies the correctness of349

10

usage protocols and avoids inter-thread interference in concurrent programs350

(Parkinson and Bierman, 2005; Vafeiadis and Parkinson, 2007; Dinsdale-351

Young et al., 2010). However, in these approaches, rely-guarantee specifi-352

cations are explicitly added at the state or thread level to model and control353

the concurrent interactions safely.354

The most recent is a sub-structural type system (Militão et al., 2014a)355

that uses rely-gurantee protocol abstraction to model the interfering in-356

teraction of aliases to the shared states. The type system then ensures that357

the aliases always get a determined value regardless of the potential changes358

made by the program context during interleaving. However, the system ex-359

plicitly assigns a separate role to each alias with a “rely ⇒ guarantee” re-360

lation between aliases. Later, Militão et al. (2016) extended the approach361

and developed a composition procedure based on linear capabilities (Mor-362

risett et al., 2005), to address the decidability of protocol composition and363

its integration with the protocol abstraction.364

Separation Logic365

Among other logic-based approaches for data race freedom, Separation366

Logic that is based on Hoare logic, attained much attention for controlling367

aliasing and verifying program behavior.368

Hoare’s logic for conditional critical regions (Hoare, 1972) and monitors369

(Hoare, 1974) was widely adopted because of the simplicity and practicality370

of their use in Java-like programs. Hoare’s logic limits thread interference to371

a few synchronization points. However, it cannot syntactically enforce a safe372

monitor synchronization. This is because of the potential risk of aliasing in a373

Java program where multiple threads can manipulate shared-memory data in374

an unsafe manner. O‘Hearn (O’Hearn et al., 2001) and Reynolds (Reynolds,375

2002) extended the Hoare’s logic to Classic Separation Logic, a new program376

logic with new connectives and separation conjunction (∗), to reason about377

the sequential programs that manipulate pointer data structures.378

Hoare logic uses triples {P}S{Q} where P and Q are predicates over379

program states that define the required and ensured properties of an ex-380

pression statement S. However, in Separation Logic, the idea is to explicitly381

divide each program state, related to a current method call, into a heap and382

a store part, to allow explicit local reasoning about the heap memory. In this383

approach, the heap h is divide into two disjoint parts say h1 and h2 using384

separation formula of the form φ1 ∗ φ2 where φ1 is a pointer valid for the385

part h1 and φ2 is a pointer valid for the part h2. The conjunction ∗ operator386

11

combines two disjoint parts of the same heap. The idea of using separation387

formula to verify heap structure, dates back to the seminal work of Reynolds388

(Reynolds, 1978) who proposed a syntactic interference control mechanism389

to constrain the effects of interference in Algol-like languages using the Sepa-390

ration Logic. The separation formula ensures that two threads accessing the391

same location do not interfere to verify program behavior392

Eventually, Separation Logic was realized as a new program logic called393

Concurrent Separation Logic (CSL) (Brookes, 2004; OHearn, 2007) to rea-394

son about multi-threaded programs, with an assumption that if two threads395

can operate on disjoint parts of the same heap location without interfering396

with each other, they can be verified in a safe and isolated way. CSL enforces397

correct synchronization of the shared-memory data logically, rather than syn-398

tactically. The idea of CSL was then extended in several sub-structural type399

systems and concurrent approaches (Gotsman et al., 2007; Appel and Blazy,400

2007; Hobor et al., 2008). to guarantee data race freedom in the shared-401

memory concurrent programs, and have recently been applied in high-order402

imperative concurrent languages and type systems (Schwinghammer et al.,403

2011; Jensen and Birkedal, 2012). However, in the separation logics-based404

approaches, the separation predicates are explicitly specified in the program405

to define the access rights on the memory locations.406

A Move to Permission-based Specifications407

Among all formal approaches to the verification of shared-memory pro-408

grams such as atomic set, behavioral type, session-type, relay-guarantee rea-409

soning and Separation Logic, is access permission. Access permission is an410

abstract capability that combines type (effect) systems and, provides more411

advanced support for reasoning about the heap resources (Boyland, 2003).412

The notion of access permissions is built on Linear Logic (Girard, 1987),413

that treats permissions as linear resources, and the Classic Separation Logic414

(O’Hearn et al., 2001) that performs local reasoning of program behavior415

against specifications. However, Classic Separation Logic does not support416

the concurrent read access of a memory location by multiple references or417

threads. Therefore, Boyland (2003) and Bornat et al. (2005) combined Sep-418

aration Logic with abstract capabilities, called access permissions, to allow419

concurrent reading of a program state.420

Compared to classic verification methods such as Owicki-Gries (Owicki421

and Gries, 1976) for concurrent programs, the permission-based Separation422

Logic ensures that: a) only one reference (thread) can write on a particular423

12

location at any given time, thereby mutating data in a safe way; b) if a424

location is read by a thread, all other threads can only have read permission425

for that location, thereby implying data race freedom without the need to426

explicitly check for the interference between threads in concurrent programs.427

Plural (Bierhoff and Aldrich, 2007; Beckman et al., 2008), a permission-428

based program verifier, was the next development phase where access per-429

missions were combined with typestate abstractions to statically ensure the430

mutability of object’s states, following the Separation Logic, and to verify431

protocol compliance in Java-like sequential and concurrent programs.432

Access permission was then subsequently used in many formal approaches433

(Huisman and Mostowski, 2015; ?) to identify and ensure the mutability of434

object’s states and to verify program behavior in shared-memory programs.435

3. Access Permissions: An Overview436

Access permissions are abstract capabilities that can encode effects (read437

and write) and aliasing information of a referenced object at one place. There438

are three main categories of access permissions:439

Fractional Permissions (Boyland, 2003). A fractional (share) permission440

say s is a concrete mathematical value that defines a shared ownership441

(access) of referenced objects o in a concurrent setting where s is a442

fraction between 0 and 1 inclusive. A value 0 represents absence of443

permission, while a value 1 represents full permission and any value444

greater than zero represents a shared read-only access on the referenced445

object. Fractional permissions can be used to split a full permission446

(with value 1) into number of fractions and then to distribute these447

fractions among multiple references, and so on. The splitting function448

for a full permission, say s, when divided between two references, say449

s1 and s2, can be written as s1 + s2 = s with each reference having a450

fraction of s in the range (0, 1).451

Counting Permissions (Bornat et al., 2005). A counting permission is a452

special fractional permission where s is an integer value between 0 and a453

maximum constant value, where zero represents absence of permission454

and the maximum value represents full permission on the referenced455

object o. The read-only access on the referenced object o is represented456

by a non-zero integer value such that 0 < s ≤ max.457

13

Symbolic permissions (Bierhoff and Aldrich, 2007). Symbolic permis-458

sions, simple called access permissions, are extension of Boyland’s frac-459

tional permission sharing model but, instead of using concrete frac-460

tional value to represent and split permissions among multiple refer-461

ences, symbolic permissions represent and track permission flow through462

the system using permission types such as unique or immutable etc.463

Access permissions splitting and joining rules for symbolic permissions464

are given in Section 3.2.465

There are five types of symbolic permissions that can be assigned to a466

reference x, for a referenced object o, in the presence of its alias y.467

unique(x): This permission provides refer-
ence x an exclusive read and modify access
on the referenced object o at any given time.
No other reference (e.g. y) to the same object
can co-exist while x has unique permission on
an object.

x yo
r

w
468

469

470

full(x): This permission grants reference x

with read and write access to the referenced
object o, and at the same time o may also be
read, but not written, by other references such
as y.

x yo
r

w
r471

472

473

share(x): This permission is the same as
full(x), except that now other references
such as y can also write on the referenced
object o.

x yo
r

w

r

w
474

475

476

pure(x): This permission gives reference x a
read but not a write access on a referenced
object o. Moreover, other references such as
y may have both read and write access on the
same object.

x yor
r

w
477

478

479

immutable(x): This permission grants a non-
modifying access on the referenced object o

to both the current reference x and any other
reference such as y.

x yor r480

14

Table 1 summarises how access permissions can co-exist on a referenced481

object o by the current reference (This Reference x), and by other reference482

(Other Reference y).483

Table 1: Co-existing access permissions (Bierhoff and Aldrich, 2007)

This Reference x Access Rights Other Reference y
unique read/write none
full read/write pure
share read/write share, pure
pure read full, pure, immutable
immutable read immutable, pure

3.1. Access Permission Contracts in the Spirit of Linear Logic and the Design484

by Contract Principle485

Linear logic (Girard, 1987) traditionally treats access permissions as re-486

sources that cannot be duplicated (discarded). Access permission contracts487

in Linear Logic are specified using the Linear Logic implication connective488

((). The connective (() operator is used to specify a method’s pre- and489

post-conditions in Linear Logic. As indicated by P (Q, permissions in the490

pre-conditions P are consumed before a method runs, and it produces Q as491

post-conditions when the method completes its execution. Once a method492

consumes its permissions they are no longer available to other methods until493

the method returns the same permissions again.494

In the Design by Contract Principle (Meyer, 1988), contracts are obliga-495

tions and rights of the client and the implementing class itself. Contracts496

are specified using the requires and the ensures clauses that represent a497

method’s pre and post-conditions respectively (Meyer, 1992; Leavens et al.,498

2006).499

In the spirit of the Design by Contract Principle, permission-based spec-500

ifications at method level represent contracts where permission-based obli-501

gations are defined as pre-conditions P that client of a class must guarantee502

before calling methods of the class, and permission-based rights represent503

post-conditions Q that must hold for both the client and the implementing504

class after executing the specified method. The idea of specifying pre- and505

post-conditions as contracts dates back to Hoare’s work (Hoare, 1969) on506

15

formal verification of software applications and has recently been applied to507

permission-based verification and parallelization approaches (Cataño et al.,508

2014; Militao et al., 2010; Huisman and Mostowski, 2015; ?).509

3.2. Access Permission Splitting and Joining Rules510

Access permission can be split into one or more relaxed permissions (frac-511

tions of original permission, using fractional values in the range (0, 1)) and512

then merged back into more restrictive or original permission. This phe-513

nomenon is known as fractional permission analysis where fractions keep514

tracks of the way the permissions were split and joined back. This informa-515

tion can be used to verify system properties based on certain specific criteria516

and to parallelise execution of a program by tracking permission-based de-517

pendencies in the program. Table 2 shows access permissions splitting and518

joining rules.

Table 2: Access permissions splitting and joining rules (Bierhoff and Aldrich, 2007).

Splitting and joining Rules Rule #

unique(x;o;k) ⇔ full(x1;o;k1)
⊗

pure(x2;o;k2) Rule I

unique(x;o;k) ⇔ immutable(x1;o;k1)
⊗

immutable(x2;o;k2) Rule II

full(x;o;k) ⇔ share(x1;o;k1)
⊗

pure(x2;o;k2) Rule III

share(x;o;k) ⇔ full(x1;o;k1)
⊗

pure(x2;o;k2) Rule IV

immutable(x;o;k) ⇔ pure(x1;o;k1)
⊗

immutable(x2;o;k2) Rule V

unique(x;o;k) ⇔ share(x1;o;k1)
⊗

share(x2;o;k2) Rule VI

immutable(x;o;k) ⇔ immutable(x1;o;k1)
⊗

immutable(x2;o;k2) Rule VII

share(x;o;k) ⇔ share(x1;o;k1)
⊗

pure(x2;o;k2) Rule VIII

share(x;o;k) ⇔ share(x1;o;k1)
⊗

share(x2;o;k2) Rule X

full(x;o;k) ⇔ full(x1;o;k1)
⊗

pure(x2;o;k2) Rule XI

519

In Table 2, let x represent current reference, o represent the referenced520

object and k represent the fraction of permission assigned to a particular521

16

reference, where at least one of x1 and x2 is x, and k1 + k2 = k. The opera-522

tor multiplicative conjunction (A
⊗

B) denotes simultaneous occurrence of523

permissions by multiple references, say x1, x2, on the same referenced object524

o. The symbol ⇔ represents the two way operation of splitting and join-525

ing permissions. For example, a unique access permission (Rule-I) having526

k fractions can be divided into k1 fraction of full and k2 fraction of pure527

permission and then joined back accordingly. Likewise, a unique access per-528

mission (Rule VI) can be split into two share permissions but cannot be split529

into a share and immutable permission as immutable cannot co-exist with530

the share permission. Linearity of resources forces the unique permission to531

be replaced by two share permissions which can be further split according532

to splitting rules and then joined back.533

4. Permission-based Verification of API Protocols534

This section introduces the first dimension of the state of the art permission-535

based verification approaches in detail. The focus is on the verification of536

API protocols for single- and multi-threaded programs. Table 3 provides a537

summary of the permission-based protocol verification approaches studied in538

this research.539

Table 3: Access permission-based protocol verification.

Ref. Prog Lang Tool Analy Perm-
Kind

Perm-
Specs

Perm-
Infer

Anno Properties

Bierhoff and
Aldrich (2007)

Seq
Plural
(NSL)

Plural (St,D) Sym (U,S,F,P,I) N Y VoUP

Beckman et al.
(2008)

Con
Plural
(NSL)

Plural St Sym (U,S,F,P,I) N Y VoUP,
RCwAB

Beckman (2009) Con
Plural
(NSL)

Sync-or
-Swim

St Sym (U,I,S,F,P) N Y VoUP,
RCwSB

Militao et al.
(2010)

Seq - Plural St Sym (U,I,S,F,P) N Y RCs

Bierhoff (2011) Seq
Java-like
(NSL)

JavaSyp St Sym (U,I) N Y CME

Aldrich et al. (2011)
Aldrich et al. (2012)

Seq
Plaid
(NSL)

Plaid (St,
D)

Sym (U,S,I) N Y VoUP

Naden et al. (2012)
Seq&
Con

Plaid
(NSL)

Plaid (St,D) Sym (U,S,I) N Y RCs

Keys to the table: Seq = sequential, Con = concurrent, St = static, D = dynamic, Sym = symbolic, Fract = fractional,
U = unique, I = immutable, S = share, F = full, P = pure, NSL = new specification language, RCs = race conditions,
VoUP = verification of usage protcols, RCwAB = race conditions with atomic blocks, RCwSB = race conditions with
synchronized blocks, CME = concurrent modification exceptions, Z set of Integers, R set of Real numbers, N set of
positive Integers.

17

4.1. Verification of API protocols in Single-threaded Programs540

In object-oriented programs, objects define usage proto- cols. Usage pro-541

tocols are constraints on the order of method invocations that the client of542

the protocol must follow for the underlying objects to work properly. Type-543

states have been used to specify usage protocols in many formal approaches544

where state information is associated with a variable of a given type, which545

is subsequently tracked to decide the valid operation sequence to be called546

on an instance of that type. It is generally acknowledged that statically547

tracking object’s state is a challenging task in the presence of unrestricted548

aliasing. This can be attributed to the improper and unexpected state tran-549

sition during program execution, and that can happen in situations such as550

a) when a method uses a data structure having aliases deeply nested in the551

hierarchy and causes side effects, or b) when aliased parameters are passed to552

a method expecting non-aliased parameters. Access permissions have been553

used, as part of formal specifications, to specify the intended design and554

to verify the correctness of usage protocols in API protocols in many for-555

mal approaches such as Plural (Bierhoff and Aldrich, 2007, 2008; Bierhoff556

and Kevin, 2009; Bierhoff et al., 2009b), JavaSyp (Bierhoff, 2011) and Plaid557

(Aldrich et al., 2011, 2012) and other related techniques.558

Typestate Verification using Linear Logic559

Bierhoff and Kevin (2009) presented a formal specification language and560

a type system to soundly and modularly verify API protocols in sequential561

programs based on access permissions. The aim was twofold, firstly to verify562

protocol conformance with actual program implementation in the presence563

of aliasing, and secondly to check whether the client of the program obeys564

the specified protocol.565

With this stream of work, Bierhoff presented a permission-based modu-566

lar protocol checking approach and a tool Bierhoff and Aldrich (2007) for a567

Java-like object-oriented language. In this approach, programmers express568

their design intents, as a valid sequence of events associated with a particular569

object, and the aliasing information using permission-based typestate con-570

tracts, written in Linear logic-based specifications at the method level. The571

system supports five kinds of symbolic permissions i.e., unique, immutable,572

full, share and pure. The Linear logic operators are already explained in Sec-573

tion 3.2, except the additive disjunction (⊕) that represents an alternative574

occurrence of multiple tasks.575

18

Listing 1 shows a sample permission-based typestate contract for a read-576

only iterator. The aim is to avoid the concurrent modification of Collection577

object when the iterator is in progress.578

Listing 1: Permission-based typestate specifications of a read-only Iterator
(Bierhoff and Aldrich, 2007).

579
1 interface Iterator <c : Collection , k : Fract > {580

2 states available , end alive581

3 boolean hasNext ():582

4 pure(this) ((result = true
⊗

pure(this) in available)583

5 ⊕ (result = false
⊗

pure(this) in end)584

6 Object next(): full(this) in available (full(this)585

7 // other methods such as finalize () etc. can be written similarly586

8 interface Collection {587

9 // methods such as add(), size(), remove (), contains () etc. comes here588

10 Iterator <this , k > iterator (): immutable(this , k)(unique(result)}589

11 }590591

According to the usage protocol, an iterator can be in one of the two592

states at any moment i.e. available or end. The state alive is a state593

inherited from the root Object type (Line 2). In Line 11, an iterator594

object is created with unique permission in Collection class. Importantly,595

it can be observed that when an iterator is created, it stores a reference to596

a collection object being iterated in one of its fields. This reference should597

be associated with the appropriate permission i.e., immutable to guarantee598

immutability of the Collection object while iteration is in progress.599

The pre-condition (pure(this)) in Line 4 specifies that method hasNext()600

requires pure permission on the referenced object as it just tests or reads601

iterator’s state. As method next() can change iterator‘s state, it needs602

full (this) (Line 6). The method hasNext() determines whether another603

object is already present in the Collection object with available state, or if604

the iteration has reached its end. The post-condition (Line 4 and 5) specifies605

if the result is true. It is legal to call the next() method on the same object606

in the available state, Otherwise, it is illegal. The post-conditions of both607

methods further show that they return the consumed permission back on608

the referenced object when they exit. The system leverages this information609

through method implementations to track state transition in the presence of610

aliasing, to guarantee the absence of concurrent modifications, and to verify611

whether program implementation follows the design intents.612

This approach is realised in Plural (Bierhoff and Aldrich, 2008), a permission-613

based automated protocol checking and conformance tool, implemented as a614

Java Eclipse plugin. In Plural, a program is specified with permission-based615

19

pre and post-conditions at method (parameter) level using JSR-1751 anno-616

tations to check whether the client of the APIs follows the specified protocol.617

Plural performs intra-procedural static analysis, called DFA (Diagram618

Flow Analysis) of the annotated code to identify and track specified pre-619

and post-permissions across method calls for every program variable (pa-620

rameter, receiver object, and local variable) and issues warning for protocol621

violations in the program. As part of the analysis, it implements a Crystal622

analyzer that performs dynamic state tests (branch-sensitive flow analysis) to623

track and report exceptions to the underlying objects. It further checks the624

structure of the provided specifications by implementing an Annotation ana-625

lyzer. The Effect checker in Plural identifies whether a method is immutable626

or whether it produces side effects. The Fraction analyser tracks the flow of627

permissions through the system to split and join permissions associated with628

a referenced object.629

Later, Bierhoff et al. (2009b) extended the modular protocol checking630

approach to check the soundness and effectiveness of Plural in specifying large631

case studies for real APIs and large third party open-source code bases, For632

example, Database Connectivity (JDBC) API in Apache Beehive project2
633

and PMD, a static code analyzer from DaCapo benchmark3 that implements634

Java iterator API. The objective is to measure the precision in terms of false635

positives, the computational cost and the annotation overhead associated in636

manually specifying and verifying these APIs with Plural annotations.637

The approach follows the Design by Contract Principle to explicitly spec-638

ify state invariants at the method level. State invariants are permission-based639

typestate assertions with a valid typestate that should hold when an object is640

in a specific state. The approach uses the concepts of ‘capture’ and ‘release’641

permissions to avoid inter-object dependencies at the method level. Listing 2642

shows a sample code snippet in Plural for Connection class in Java JDBC643

API.644

Listing 2: A Java JDBC connection interface (fragment) with Plural specifications
(Bierhoff et al., 2009b).

645
1 @States({"open", "closed"})646

2 public interface Connection {647

3 @Capture(param = "conn")648

4 @Perm(requires = "share(this , open)", ensures = "unique(result) in open")649

1https://jcp.org/en/jsr/detail?id=175
2http://beehive.apache.org/
3http://dacapobench.org/

20

https://jcp.org/en/jsr/detail?id=175
http://beehive.apache.org/
http://dacapobench.org/

5 Statement createStatement () throws SQLException;650

6 @Full(ensures = "closed")651

7 void close() throws SQLException;652

8 }653654

In Listing 2, @States annotation (Line 1) specifies concurrent typestates655

for a connection object. The method createStatement() (Line 5) creates656

statements, in the Connection interface, with unique permission in ‘open’657

state. When the connection object is closed it invalidates all the statements658

created with it, leading to runtime errors if a programmer uses invalidated659

statements. To avoid this error, the approach captures the dependent conn660

object, using @Capture annotation in Line 3. The annotation @Perm in Line661

4 with requires, clause specifies share permission on the captured object as662

pre-permission with open state guaranteed, and the ensures clause specifies663

that the method returns a new statement object in open state with unique664

permission on it.665

The permissions on the conn object are explicitly released (using @Release)666

when the statement object is no longer in use or when the connection object667

is in closed state. The method close() closes the conn object by calling668

method isClosed(), (not included in the sample program due to brevity),669

that ensures the current state of the connection object to be closed (using670

annotation @TrueIndicates (“closed”)). The ensures clause in Line 6 speci-671

fies that method returns Full permission back to the connection object in the672

closed state. The analysis tracks these specifications in the system to ver-673

ify protocol compliance with program implementation and to verify correct674

usage of the protocol by the client program.675

Table 4: Annotation overhead for sample APIs verified in (Bierhoff and Kevin, 2009;
Bierhoff et al., 2009b).

Program Statistics and Annotation Overhead

Program SLOC Methods #Annot.

JDBC 9,866 440 838

Beehive 2,158 65 66

PMD 39,400 - 617

21

Typestate Verification using Plaid676

As discussed previously in Section 2, Plaid (Aldrich et al., 2011, 2012) is677

a new typestate-oriented programming language that verifies the correctness678

of programs based on access permissions.679

Every type in Plaid is represented as tuples having a type structure and680

associated permissions that express the aliasing and the mutability of the681

corresponding object’s typestate. Plaid borrows its grammar and lexical682

structure from the Java Specification Language (JSL) and provides inter-683

operability with Java programs. Classes in Plaid are represented using the684

keyword state and transitions between states are represented by the state685

transition symbol ‘�’ that distinguishes pre-state from post-state. Plaid sup-686

ports three types of symbolic access permissions i.e., unique, immutable and687

share in the specifications. The keyword ’none’ is used when no permissions688

are required to access an object.689

Listing 3 shows an annotated code fragment for a buffer implementa-690

tion in Plaid. A buffer can be in one of the two states i.e. EmptyBuffer691

and FullBuffer (Line 1). The method put() is associated with an empty692

buffer. The signature of the method put() (Line 4) specifies that the state693

of the receiver object should change from EmptyBuffer to FullBuffer when694

the buffer receives some element. The state FullBuffer requires a field el-695

ement elem that is passed as method parameter e. The permission-based696

contract (Line 4) specifies that the passed element has unique permission in697

the Element state and the method does not return any permission (none)698

to the caller of the method. This is because a field reference with exclusive699

rights (unique) has been created for that element in FullBuffer state. Oth-700

erwise returning permission back to a caller would cause a violation of the701

uniqueness property. Likewise, the FullBuffer state has a single operation702

get() (not included here due to brevity), that returns the current state of703

the object in reference elem and ensures that the receiver object will go back704

to an EmptyBuffer state.705

Listing 3: A buffer implementation (fragment) in Plaid (Aldrich et al., 2011).
706

1 state Buffer comprises EmptyBuffer , FullBuffer {}707

2 ...708

3 state EmptyBuffer caseof Buffer {709

4 method void put(unique Element � none e) [EmptyBuffer � FullBuffer] {710

5 this ← FullBuffer {elem = e};}711

6 }712713

Plaid runtime leverages permission flow through the system along with asso-714

22

ciated typestate information to ensure protocol compliance at runtime. The715

type system allows permission splitting, joining and type casting automati-716

cally (when and where required) using the permission splitting and joining717

rules given in Table 2.718

Table 5: Summary of annotation overhead for sample programs in Plaid (Stork et al.,
2014).

Program Statistics and Annotation Overhead

Program SLOC #AnnoLOC #Annot.

webserver 227 47 (20.7%) 59

dic/global 169 41 (24.2%) 65

dic/fine 251 71 (28.3%) 109

Naden et al. (2012) presented a type system and a flexible permission bor-719

rowing mechanism for unique, shared, and immutable permissions without720

using explicit fractions of permissions. Permission borrowing is an extraction721

of permission from a source field, temporarily using the borrowed permission,722

and returning part or all of it to the source field. The aim was to prevent723

the concurrent modifications of the shared objects based on symbolic per-724

missions.725

The type system is based on the Plaid language. Like Plaid, it supports726

three types of symbolic permissions i.e unique, immutable and share but unlike727

Plaid, where a field is reassigned with a new value to recover permission on728

the reference, in the Naden’s type system the caller function itself returns729

the original permission consumed on the reference.730

Unlike other techniques (Boyland, 2003; Bierhoff and Aldrich, 2007; Ja-731

cobs et al., 2011; Heule et al., 2011) that support permission borrowing, this732

approach provides a more intuitive and natural abstraction to model and733

to reason about the permission flow through the system, making permission734

tracking flexible and much easier for programmers. However, like Plaid, it735

wants programmers to explicitly specify permissions-based state information736

as a part of method specifications.737

Typestate Verification using JML738

Bierhoff (2011) combines symbolic permissions (Bierhoff and Aldrich,739

23

2007), with JML contracts (Leavens and Cheon, 2006) to reason about alias-740

ing and to detect the absence of Concurrent Modification Exceptions (CMEs)741

and other recurrent programming errors, such as IndexOutofBoundsExceptions742

exceptions in realistic data structures such as Java ArrayList.743

Although JML specifications have been used, in may formal approaches744

(Rodŕıguez et al., 2005; Araujo et al., 2008; Kim et al., 2009; Cok, 2011),745

to verify functional correctness and domain specific properties of sequential746

and concurrent programs, the support for concurrency and aliasing is rather747

limited. On the contrary, access permissions provide flexible aliasing control748

mechanism to track all the references of a particular object and update state749

changes to all such references. The presented approach defines permission-750

based class invariants as JML contracts.751

The technique implements a permission tracking algorithm as a prototype752

tool called JavaSyp4(Symbolic Permissions for efficient static program veri-753

fication). In JavaSyp, permission-based invariants are specified using Java754

annotations and tracked as part of the type checking procedure, to ensure755

that the specified invariants hold as long as a the client has permission to the756

referenced object and to control aliasing. In this approach, permission track-757

ing is straightforward as tracking symbolic values is much easier than tracking758

fractional permissions. However, it only supports two kinds of permissions,759

i.e., unique and immutable using annotations @Excl and @Imm respectively760

with the referenced object.761

Listing 4 shows an annotated version of conventional Java ArrayList ob-762

ject a declared with unique permission in Line 2. The list object maintains763

a list of elements in the order placed originally. The method getElem()764

method returns the element on the given location (index) with immutable765

permission on it (Line 6). The invariants (Line 4) for method getElem()766

specifies that object a should be a non-null reference having at least one767

element in it and the total number of elements in a should not exceed the768

declared size. The annotation @requires in Line 5 specifies a pre-condition769

for method getElem() that, before calling this method, the index parame-770

ter must be between 0 and size-1. JavaSyp performs static analysis of the771

annotated code to generate verification conditions (VCs) based on the spec-772

ifications. The program is then verified against inferred conditions using the773

SMT solver (C. Barrett A. Stump and Tinelli, 2010).774

4http://code.google.com/p/syper.

24

http://code.google.com/p/syper.

Listing 4: A Java array list (fragment) with permission-based JML contract in JavaSyp
(Bierhoff, 2011).

775
1 public class ArrayList <T> {776

2 @Excl private T[] a;777

3 private int size ;778

4 // @invariant 0 <= size & a != null & size <= a.length;779

5 // @requires 0 <= index & index < size ;780

6 @Imm public T getElem(int index) {781

7 imm: return a[index];}782

8 }783784

4.2. Verification of API Protocols in Multi-threaded Programs785

Beckman (2010) extended the Bierhoff’s modular automatic protocol check-786

ing approach to verify “if the object protocols work correctly even in the787

presence of concurrent modifications by multiple threads”. In this stream of788

work, this section discusses the use of permission-based specifications to ver-789

ify usage protocols in concurrent programs (Beckman et al., 2008; Beckman,790

2009; Militao et al., 2010) using different mechanisms.791

Typestate Verification with Atomic blocks792

Beckman et al. (2008) extended the permission-based modular protocol793

checking approach (Bierhoff and Aldrich, 2007) to verify the correctness of794

usage protocols for a set of concurrent programs such as JChannel5 and795

Reservation Manager that use atomic blocks as synchronization primitives.796

The objective was to enforce the correct use of typestates at runtime and to797

verify API protocol compliance with its specifications. The approach uses798

five kinds of symbolic permissions to identify aliasing and to approximate799

whether a referenced object can be thread-shared or not.800

Listing 5 shows a sample method isConnected() in a Connection class801

with permission-based typestate specifications.802

Listing 5: Permission-based typestate specifications for method isConnected() in a Con-
nection class (Beckman et al., 2008).

803
1 class Connection {804

2 boolean isConnected ():share(this , ?) (805

3 (result == true
⊗

share(this , CONNECTED)) ⊕806

4 (result == false
⊗

share(this , IDLE)) {807

5 atomic :{808

6 return (this.socket != null);}809

7 }810

8 }811812

5http://www.cs.cmu.edu/~nbeckman/research/atomicver/

25

http://www.cs.cmu.edu/~nbeckman/research/atomicver/

The pre-condition “share(this, ?)” in Line 2 asserts that the method813

needs share permission on the receiver object, which needs to be in the un-814

known (?) state. Likewise, the post-condition in Line 3 specifies that if the815

method returns true, the receiver object should get the original permission816

back while in the CONNECTED state Otherwise, it would get the same permis-817

sion back but in the IDLE state in Line 4. Exclusive access to full, share and818

pure references are maintained using atomic blocks in Line 5.819

The approach is realised as part of the Plural tool. The analysis identi-820

fies the abstract state of a referenced object before calling a method, and821

discovers the way it would be shared with other objects. If the permission822

on a particular reference (thread) indicates that the referenced object can823

be accessed simultaneously by other references (threads), as is the case with824

full, share and pure permissions, it assumes that the object is thread-shared.825

The approach discards state information of the local variables having pure826

and share permissions as the objects with these permissions can be modified827

by other threads and it is difficult to track them statically through atomic828

blocks. The limitation of this work is the use of atomic blocks as mutual ex-829

clusion primitives. Atomic blocks are generally associated with transactional830

memory systems and have limited usage in today’s applications. The cur-831

rent analysis generates false positives for programs having synchronization832

primitives other than atomic blocks.833

Typestate Verification with Synchronized blocks834

Beckman (2009) extended the previous type system to perform typestate835

verification of concurrent programs having synchronized blocks as mutual836

exclusion primitives.837

In this approach, every program reference is associated with a permission838

kind (having a permission type and an abstract state that is part of the ref-839

erence type). Like Beckman et al. (2008), the system distinguishes between840

thread-local and thread-shared objects based on permission contracts. The841

approach is implemented in a tool called Sync-or-Swim for Java that performs842

static analysis of the program (within a method). It identifies the references843

on which the current thread is known to have synchronized and tracks the844

permissions associated with references as they flow with method’s pre- and845

post-conditions, to ensure that an object can be modified concurrently. The846

analysis discards state information for thread-shared (modified by other ref-847

erences) objects unless it is statically known that the same references have848

previously been synchronized.849

26

Unlike other behavioral checkers for concurrent programs (Jacobs et al.,850

2005) that require lock-based specifications to identify the part of heap to851

be protected, the proposed approach can verify program behavior without852

requiring lock-based specifications. Like other single-threaded typestate ver-853

ification approaches, it only requires aliasing (permission) and typestate in-854

formation to verify the correctness of concurrent programs.855

Table 6: Annotation overhead for sample programs verified in (Beckman, 2010).

Program Statistics and Annotation Overhead

Program Classes APIs Methods SLOC #Annot.

JabRef 813 7 4,072 74,217 268

JSpider 187 1 951 8,955 30

Table 6.2 summarizes the number and type of specications that were856

required to be written in JabRef in order to check each API. These anno-857

tations are broken down into three categories. Invariant annotations are858

used to specify state invariants. Method annotations are used to specify859

pre- and post-conditions, and Poly. annotations are used by our polymorphic860

extension. They are used to instantiate a polymorphic API with a specic861

permission. Table 6.2 also summarizes the amount of time taken to specify862

and verify the code under the column heading, Spec. Time. In this column,863

h signies hours and m, minutes. But verifying these calls required 243 anno-864

tations, one quarter of which were state invariant annotations. In our case865

much of the frustration could have been alleviated with good default permis-866

sions, a topic we will discuss further in Section 6.4. All in all, 357 annotations867

were required to verify seven APIs used in a program of 74,217 lines, giving868

a specication density of 1 annotation per 207 lines of code.869

Typestate Verification with Views870

Militao et al. (2010) expands on Bierhoff’s permission type system for871

Plural (Bierhoff and Aldrich, 2007), by going beyond the five traditional types872

of permissions. The approach introduces a new abstraction called View that873

is a projection of an object with a small set of access permissions associated874

with individual components (fields and/or methods) of an object.875

The type system combines view-based controlled aliasing with typestates876

and Boyland’s fractional permissions to manage safe initialization of differ-877

27

ent sections of an object reference, to track state information and to ensure878

safe access of the referenced objects in a unique-writer and multiple-readers879

scenario. An immutable view can be shared with an inbound number of880

copies and a write request merges all the readers back to a single writer881

using fractional permissions. However, it does not support aliasing of the882

form where an object can be shared between multiple writers with a state883

guarantee. In this approach, a view behaves as a state except that it can be884

split, merged (recombined) using fractional permissions. Therefore, it resem-885

bles the permission accounting model (Bornat et al., 2005) where views are886

treated as accountable parts of a typestate thereby, allowing local reasoning887

of the shared-memory programs.888

889

The analysis of all the Plural-based verification approaches in Section 4.1890

and 4.2 shows that Plural can identify common challenges for specifying and891

implementing usage protocols in real-world case studies. It helps program-892

mers to statically follow usage protocols without actually executing the pro-893

gram. However, Plural analysis is limited as it cannot identify errors in the894

specifications and might use non-consistent specifications. Moreover, there895

is no reachability analysis support in Plural, which means that a programmer896

may write inconsistent specifications at the method level and consequently,897

methods with these specifications will never be called by any client code,898

resulting in unreachable code.899

Complementing the Plural tool, research (Siminiceanu et al., 2012), has900

been done to verify the correctness of manually added Plural specifications901

as well as verifying the program behavior. Further, it provides limited sup-902

port to the verification of typestate invariants. It can only check invariants903

on boolean properties, e.g. checking for non-nullness, However, it cannot904

verify invariants that involve arithmetic predicates, e.g. x > 0 (where x is an905

integer field). Moreover, it requires programmers to explicitly specify the de-906

sign intents of the API protocols as permission-based typestate specifications907

in the program which results in annotation overhead for the programmers.908

In the same fashion, Plaid and related approaches forces a client program909

to follow the desired sequence of method calls to verify the correctness of910

typestate-based programs, but at the cost of adding permission-based an-911

notations as a part of type declarations at the code level. Moreover, Plaid912

does not support full and pure permission as for its analysis. In Plaid,913

permission-based typestate specifications are added as a part of the program914

to verify proper state transition between multiple objects during execution915

28

of a method.916

5. Verification of Race conditions and Deadlocks in Multi-threaded917

Programs918

In imperative and object-oriented programming languages, the biggest919

challenge has been the correctness of concurrent multi-threaded programs in920

the presence of aliasing and to avoid domain specific problems such as dead-921

locks and race conditions. Access permissions have been used to characterize922

the way a shared resource can be accessed by multiple threads and to han-923

dle aliasing in many verification approaches. The general idea is to assign924

permission to program references to access memory locations and track the925

permission flow through the system to enforce mutual exclusion mechanisms926

in shared-memory concurrent programs.927

This section discusses the second dimension of the survey i.e., the use of928

permission-based specifications for verification of domain specific problems929

in concurrent programs.930

5.1. Permission Sharing and Accounting Models931

Permission sharing and accounting models (Boyland, 2003; Bornat et al.,932

2005; Parkinson and Bierman, 2005; Appel and Blazy, 2007; Hobor et al.,933

2008; Dockins et al., 2009) facilitate thread-local reasoning for shared-memory934

concurrent programs and to ensure race-free sharing of heap locations.935

As discussed previously in Section 3, the Boyland’s permission sharing936

model (Boyland, 2003) also called fractional permission, defines shared own-937

ership of resources in a concurrent environment. The sharing policy maps a938

permission fraction (share) as a rational number R, in the range (0, 1], to al-939

low read or write operation on a particular memory location. The fractional940

model has been used to handle problems that follow concurrent divide-and-941

conquer algorithms where a shared (read) permission can be divided into942

multiple shared permissions, to an unbounded depth, for any possible pat-943

tern of divide-and-conquer.944

Although fractional permissions are infinitely splittable, this permission945

sharing model does not satisfy the disjointness property because rational946

numbers are not ideal for resource sharing, as shown by Parkinson and Bier-947

man (2005), who proposed a permission sharing model, that allows both948

read sharing and disjointness of resources, to formalize and verify a subset of949

single-threaded Java programs with Separation Logic. In this model, resource950

29

invariants are defined using permission-based abstract predicates defined at951

the Object class level with an empty footprint, (permissions associated with952

a memory location), that each subclass extends to hold additional fields.953

Bornat et al. (2005) proposed a permission accounting model and a light-954

weight verification approach to handle the accounting problem associated955

with reader-writer locks in concurrent programs. The approach extends sep-956

aration relation 7→ in classic Separation Logic (Reynolds, 2002) and asso-957

ciates fractional permissions with each heap location to allow read sharing958

of heap locations. In this approach, each heap location x is treated as a map959

having addresses E with a permission value z, where z represents the level960

of permission carried by a heap location, as shown in Formula 1).961

x 7→
z
E ⇒ 0 ≤ z ≤ 1 (1)

The idea is to count the number of shared tokens using an integer counter962

say s. It is incremented or decremented when a reader locks (receives a read963

token) or unlocks (returns the share token) respectively, s > 0 means there964

are outstanding read tokens but s = 0 implies the absence of outstanding965

readers, which means that a writer may acquire, hence ensuring a race-free966

sharing of heap locations.967

Appel and Blazy (2007) presented the operational semantics and de-968

veloped a Sequential Separation Logic to extend the C Minor language,969

a mid-level imperative programming language as a machine independent-970

intermediate language. The approach evaluates expressions as functions in971

Coq6, a formal language that combines mathematical functions, axioms and972

theorems together with a semi-interactive environment to develop machine-973

checked proof assistants. The approach provides an end-to-end machine-974

checked correctness proof of the proposed logic in Coq. Unlike the classical975

Separation Logic (O’Hearn et al., 2001) where expressions are evaluated in-976

dependent of heaps, the approach associates each expression evaluation with977

a footprint. “A footprint is a mapping from memory addresses (ν) to per-978

missions” (Appel and Blazy, 2007).979

In the proposed semantics, footprint (φ) is considered as a set of frac-980

tional permissions (Bornat et al., 2005) to verify non-interference of load and981

store operations in memory. A memory store yields result only if reading982

6http://coq.inria.fr

30

http://coq.inria.fr

or writing a chunk of memory type, say ch at location ν is legal according983

to its footprint. For example, the semantics φ ` loadchν (or φ ` storechν)984

depicts that all the addresses from location ν to ν +|ch|−1 can be read (or985

write). Loading memory outside the footprint yields exceptions and causes986

expression evaluation to stop. The disjoint sum of two footprints φ0⊕φ1 = φ987

ensures the exclusive read/write or read-only ownership of the underlying988

memory.989

Hobor et al. (2008) extended the Appel and Blazy’s machine-checked990

soundness proof and Leroy’s compiler-correctness proof in a concurrent set-991

ting, and developed a concurrent C Minor language having shared-memory992

and first-class locks and thread. He proposed a modular concurrent op-993

eration semantics as a generalization of Concurrent Separation Logic (CSL)994

(OHearn, 2007) but it goes beyond CSL as it allows dynamic lock and thread995

creation.996

In the semantics, a world w corresponds to a footprint φ as in the work of
Appel and Blazy (Appel and Blazy, 2007). A world specifies permissions for
the current thread but this semantic deals with load (store) operations for
multiple threads. The need was to evaluate an expression with a guarantee
that footprints (φ) of different threads are disjoint. For this purpose, the
approach defines permission-based lock invariants to grant or restrict owner-
ship for the accessed memory by extending the classic separation relation 7→
as follows:

e 7→
π
R (2)

The relation shows an expression e maps to a memory address with resource997

invariant R. Every expression acquires a lock before its evaluation. Each lock998

is associated with a resource invariant R, where each invariant is supported999

by a unique set of memory addresses and worlds that inform the lock owner-1000

ship π acquired or lost by each thread. The approach implements Parkinson’s1001

(Parkinson and Bierman, 2005) permission sharing model to define owner-1002

ship. A 100% share represents full ownership and a non-empty ownership1003

(0 < π < 100%) represents read-only access. Any access without ownership1004

means the program has no semantics and the evaluation stops.1005

Dockins et al. (2009) proposed a tree share permission accounting model1006

that is more powerful than Bornat’s token accounting model. It rectifies1007

the problems with Parkinson’s permission model. Tree share is a boolean-1008

labelled binary tree that supports both splitting and token accounting for the1009

31

shared reading of resources in concurrent settings. Although Boyland’s frac-1010

tional share model is infinitely splittable, it does not satisfy the disjointness1011

property and may pose read/write and write/write race conditions. Simi-1012

larly, in Bornat’s token accounting model, a central authority lends out the1013

total permission into shares in the form of permission tokens when and where1014

required. It counts the outstanding tokens to verify permission accounting.1015

These models satisfy positivity of resources but not the disjointedness.1016

Unlike previous share accounting models, Dockins et al. (2009) defines
heaps as partial functions from memory locations (L) to values (V) with
pairs of non-unit shares (S). The token factories are represented using non-
negative integers and the tokens themselves are represented using negative
integers. When a token is pushed back into the factory, the integers are
added. The token factory’s share becomes zero when it gets all its tokens
back. The extended points-to operator relation is given below:

l 7→
s, n

v (3)

The relation specifies that memory location l contains a value v with a1017

non-unit share s that is indexed by an integer n. If n is zero, the share s1018

is full. If n is positive, it means that n tokens are missing over s in the1019

token factory, and the negative value for n depicts that token factory has1020

size− n shares. The extended model supports and satisfies all the required1021

properties such as disjointedness, cross, and infinite splitting in permission1022

sharing models.1023

5.2. Permission-based Verification Techniques and Tools1024

This section describes and discusses the permission-based verification ap-1025

proaches and tools such as Fluid (Zhao, 2007), Chalice (Leino et al., 2009;1026

Leino and Müller, 2009), Verifast(Jacobs et al., 2010, 2011), Pulse(Siminiceanu1027

et al., 2012; Cataño et al., 2014; Ahmed and Cataño, 2018), Heap-Hop (Vil-1028

lard et al., 2010), HIP/SLEEK (Hobor and Gherghina, 2012; Jacobs and1029

Piessens, 2011), HJp (Westbrook et al., 2012), Vercors (Amighi et al., 2012,1030

2014; Huisman and Mostowski, 2015; Amighi et al., 2015) and Viper (Juhasz1031

et al., 2014; Müller et al., 2017) that have been developed to resolve concur-1032

rency problems in concurrent programs.1033

Table 7 provides a summary of the existing permission-based verifications1034

tools and related approaches to verify common concurrency problems.1035

32

Table 7: Permission-based verification of race conditions and deadlocks.

Reference Prog Lang Tool Analy Perm-
Kind

Specs Perm-
Infer

Anno Properties

Boyland (2003) Con PSM - - Frac [0, 1]∩R N - RCs
Bornat et al. (2005) Con PSAM - - Count [0, 1]∩Z N - RCs

Parkinson and Bierman (2005)Seq
Java-like
(NSL)

- - Counting
total
read∗

N - RCs,
VoADT

Appel and Blazy (2007) Seq
CMinor
(PSAM)

Coq - Counting [0, 1] ∩ N N - RCs, MCCP

Zhao (2007)
Zhao et al. (2008)

Con Java Fluid† St Frac
read
write∗

N Y RCs

Hobor et al. (2008) Con
CMinor
(PSAM)

Coq - Counting [0, 100]% N - RCs, MCCP.

Dockins et al. (2009) Con CMinor Coq Frac -
(s, n),
n ∈ Z - Y MCP

Leino and Müller (2009) Con Chalice Chalice D Frac
full
some
no

N Y RCs, DLcks

Leino et al. (2009) Con Chalice Chalice D Frac
acc(x)
rd(x)‡

access
pure

Y RCs, DLcks

Villard et al. (2010) Con NSL Heap-
Hop

SFEA - x 7→ C N Y
RCs,DLcks
MLeaks,VoUP

Jacobs et al. (2010, 2011)
Seq&
Con

C and
Java
(NSL)

VeriFast D
Frac
Count

read
write∗

N Y
RCs,VoNullP,
AIOBEx

Jacobs and Piessens (2011) Con NSL VeriFast D
Frac
Count

[0, 1]∩R N Y FGSM, RCs

Hobor and Gherghina
(2012)

Con NSL HIP/SLEEKD Frac (0, 1]∩R N Y RCs

Westbrook et al. (2012) Con HJ HJp St Frac
Shared read (ωR)
private write (ωW)
ω ∈ {0, 1, ε}

N Y RCs

Siminiceanu et al. (2012)
Cataño et al. (2014)

Seq&
Con

Plural Pulse
St
RGA

Sym (U,I,S,F,P) N Y
RCs, DLcks
VoAPs, VoNullP

Blom et al. (2014) Con OpenCL VerCors D Frac
Perm(x,π)
π ∈ {rd, rw} N Y RCs,

VoGPGPU

Amighi et al. (2014) Con Java VerCors D Frac
Perm(x, π)
π ∈ (0, 1]∩R N Y RCs, FCoJP

Huisman and Mostowski
(2015)

Con
Java
(PSM)

KeY and
PVS

D -
readPerm(x,Perm)
writePerm(x,Perm)α

N Y RCs,
AVROfrac

Amighi et al. (2015) Con Java Vercors St
Frac
Count

(0, 1]∩R N Y RCs.

Müller et al. (2017) Seq
Java,Chalice
OpenCL, Scala

Viper St Frac
acc(x)
acc(x, rd)

N Y RCs

Ahmed and Cataño (2018)
Seq&
Con

JML Pulse St Sym (U,I,S,F,P) N Y VoJMLC,
RCs

Keys to the table: Seq = sequential, Con = concurrent, St = static, D = dynamic, Sym = sym-1036

bolic, Fract = fractional, U = unique, I = immutable, S = share, F = full, P = pure, Z = set of Integers,1037

R set of Real numbers, N set of positive Integers, NSL = new specification language, PSM = permis-1038

33

sion sharing model, PSAM = permission sharing and accounting model, RCs = race conditions, DLcks1039

= deadlocks, VoNullP = verification of null pointers, VoUP = verification of usage protcols, VoAPs=1040

verification of access permission-based specifications, VoJMLC = verification of JML contracts, AROfrac1041

= Avoiding reasoning overhead associated with fractional permsisions, FCoJP = functional correctness1042

of Java programs, VoGPGPU = verification of GPGPU programs, FGSM = fine-grained synchroniza-1043

tion mechanism, AIOBEx, = ArrayIndexOutofBoundsExceptions, MLeaks = memory leaks, MCCP =1044

machine-checked correctness proofs ,VoADT = verification of abstract data types, x heap location, rd1045

read access, C = session type contract, α a permission slice. ∗ permissions are read and write accesses, †1046

implemented in the Fluid project, ‡ shows accessibility predicates.1047

Fluid1048

Zhao (2007) developed a permission-based language and a type system to1049

enforce fixed locking order mechanism in Java-style multi-threaded programs1050

having unstructured parallelism and synchronization.1051

The technique was realised as a prototype tool in the Fluid project1052

(Greenhouse and Scherlis, 2002; Greenhouse, 2003). In their approach, a1053

program is explicitly annotated with a method’s effects and lock invariants.1054

The method’s effect specifies the read or write operation on the current1055

object this or any of its field e.g., the annotations reads(this.x) and1056

writes(this.x) in Listing 6, in Line 2 and 4. The lock invariant specifies1057

the synchronized access of a referenced object, inside the method body, us-1058

ing the requires (this) clause in Line 7, that a method call for deposit()1059

should be inside a synchronized block to acquire a lock on the receiver object1060

this.1061

Listing 6: Code segments showing read, write and lock usage annotations in Fluid.
1062

1 class Account{1063

2 read (this.x)1064

3 void getBalance (){ x; }1065

4 writes (this.x)1066

5 void setBalance(int newX) { x = newX; }1067

6 void deposit(int x){1068

7 requires (this) { balance = balance + x; }1069

8 }10701071

The system then translates high level access annotations into low-level (frac-1072

tional) permissions to distinguish the read and write effects of a method on1073

the referenced objects. The system assigns unique permission with a refer-1074

enced object if it is being written in the method body and a value less than1075

1 is assigned for read operation. The type system uses this information to1076

ensure that a given expression can be executed with assigned permissions1077

34

but it does not verify program behavior based on input specifications.1078

Further, Zhao et al. (2008) proposed a synchronization policy to avoid the1079

unnecessary synchronization effects in the previous approach. The system1080

uses “permission nesting” to interpret the safe and correct usage of lock-1081

based specifications associated with a field.1082

Chalice1083

Leino and Müller (2009) presented a permission-based verification method1084

to prevent problems such as deadlocks and race conditions, that arise due1085

to dynamic locking orders in multi-threaded programs. The approach en-1086

sures concurrent sharing and un-sharing of objects among multiple threads1087

based on Boyland’s fractional permissions (Boyland, 2003). The system uses1088

permission percentages (between 0 and 100) instead of permission fractions.1089

A permission percentages is a fractional permission with a definite size that1090

splits a field permission among several monitors or threads. A thread can1091

access a shared object, (heap location), if it has permission to do so. The ap-1092

proach defines three types of permissions based on their percentages: ‘Full’,1093

‘Some’ and ‘No’.1094

The technique was realized in Chalice (Leino et al., 2009), a concurrent1095

program verifier that supports programs with fork/join parallelism, monitors1096

invariants and automatically verifies the absence of deadlocks and data races.1097

In Chalice, programmers annotate programs with permission-based contracts1098

using access predicates for each heap location. The annotation acc(o.f) rep-1099

resents ‘Full’ permission (100%) on a field of object o that shows that a thread1100

has exclusive access on o.f. A fractional permission having n percentage of1101

the actual permission is represented as acc(o.f, n). A non-zero (‘Some’)1102

permission depicts read-only access to location o.f, denoted as rd(o.f).1103

Listing 7 shows a sample method specifications in Chalice. The pre-1104

condition of the method Clone() in Line 4 specifies that the caller of the1105

method must possess non-zero (read) permission on location this.val be-1106

fore calling this method. Following the Design by Contract Principle, the1107

post-condition in Line 5 specifies that the callee should generate Full per-1108

mission on result.val field and return the input (read) permission to lo-1109

cation this.val. Otherwise, the system will not be able to recover Full1110

permission on it and in turn the location would remain immutable forever.1111

Listing 7: A sample program with accessibility predicates in Chalice (Leino and Müller,
2009).

1112
1 class Cell {1113

35

2 int val ;1114

3 Cell Clone()1115

4 requires rd(this.val);1116

5 ensures acc(result.val) ∧ rd(this.val);{1117

6 Cell tmp := new Cell ;1118

7 tmp.val := this.val ;1119

8 return tmp ;}1120

9 }11211122

The annotated program is analyzed to verify whether the code respects the1123

permission contract for every thread schedule, as permissions flow between1124

threads and monitors or between multiple threads. The analysis verifies that1125

the sum of permissions for all threads remains less than or equal to 100% to1126

ensure thread non-interference.1127

VeriFast1128

Jacobs et al. (2010, 2011) developed a sound, modular automatic pro-1129

gram verification tool VeriFast to verify single- and multi-threaded programs1130

written in C and Java. To enable verification, the programmer defines lemma1131

functions in the program. Lemma functions are like ordinary C functions,1132

except that lemma functions and calls of lemma functions are written within1133

annotations. In VeriFast, lemma functions are interactively specified in the1134

program following the Separation Logic style of specifications. They serve1135

as proofs to ensure that a method terminates without producing any side1136

effects in the system.1137

The approach simulates shared variables as heap locations and associates1138

a permission coefficient using Boyland’s fractional permission to each heap1139

location to represent its access rights. The coefficient lies within (0, 1] where1140

1 represents exclusive rights to manipulate a particular heap location and any1141

value smaller than 1 represents a shared (read) access by multiple threads.1142

The analysis works in a way that each method is symbolically executed based1143

on other methods’ contracts to verify its calls. The logic-based specifications1144

are tracked through the system to detect exceptions such as NullPointer1145

and ArrayIndexOutOfBoundsExceptions exceptions in the program, and to1146

verify the domain specific problems in a program such as race conditions.1147

The system does not support permissions for the program’s local variables.1148

Heap-Hop1149

Villard et al. (2010) developed a program prover Heap-Hop1 based on1150

1http://www.lsv.fr/Software/heap-hop/

36

http://www.lsv.fr/Software/heap-hop/

Table 8: Summary of annotation overhead for sample programs in VeriFast (Jacobs et al.,
2010).

Program Statistics and Annotation Overhead

Program SLOC #AnnoLOC

chat server 242 114

linked list and iterator 332 194

composite 345 263

JavaCard applet 340 95

GameServer 383 148

Hoare’s monitors and copyless message-passing mechanism (Villard et al.,1151

2009), an alternative to lock-based parallelism where only pointers to a mes-1152

sage content in memory are transferred. The objective was to verify dead-1153

locks, data races and to ensure the absence of memory leaks in heap manip-1154

ulating concurrent programs, particularly those that involve communication1155

protocols with list and tree structures. The approach uses channels as syn-1156

chronization mechanisms where each channel consists of two endpoints, say1157

e and f , dynamically allocated on the heap.1158

Heap-Hop requires programmers to specify pre- and post-conditions, as1159

ownership information for the heap locations, and loop invariants defined as1160

Separation Logic (Reynolds, 2002) formulae. The communications between1161

endpoints are governed using a contract C, a form of session types (Takeuchi1162

et al., 1994), which specifies a valid sequence of message m passing on a1163

channel. In Heap-Hop, ownership of cell to a heap location is represented1164

using the notation x 7→ and the point-to relation e 7→ C{a} specifies a1165

contract C in the state a with respect to a particular endpoint e.1166

Listing 8: A sample method with permission-based contracts in Heap-Hop
1167

1 contract C {// session type contract1168

2 initial state a { !m 7→ b; !m 7→ c; }1169

3 state b {}1170

4 final state c {}1171

5 }1172

6 foo() { (e,f) = open(C); send(m,e); receive(m,f); close(e,f); }11731174

37

The approach generates verification conditions based on the input specifi-1175

cations. It performs symbolic (forward) execution analysis of the generated1176

conditions to determine what input (conditions) will cause each part of a1177

program to execute and verifies the intended behavior of a program. The1178

approach ensures that message sending never fails, and message reception1179

should be blocked until the right message is received.1180

HIP/SLEEK1181

Hobor and Gherghina (2012) developed a Hoare-style concurrent Sepa-1182

ration Logic that verifies Pthreads-style synchronization mechanism called1183

barriers. Pthreads (POSIX Threads) is an API for threaded programming1184

that manages various procedure calls for thread creation, destruction and1185

synchronization (Butenhof, 1997). A common use of barrier calls is to man-1186

age a pool of threads in a pipeline. In Pthreads, barriers are used to re-1187

distribute ownership (as read and write access) of resources (memory cells)1188

simultaneously between multiple threads. At barrier calls, every thread gives1189

up its write access to the portion of memory allocated to it, and gets back1190

the read-only access to the entire memory.1191

The approach extends the concept of permission shares in DSA (Dockins1192

at al., 2009) and assigns positive share to each thread to access a particular1193

location. A full share is required to modify a particular location. A full1194

share can be split into multiple partial shares that are merged back to get1195

back the full share. The idea is to ensure that if a thread has a partial1196

share for a particular location, no other thread has full share (permission)1197

for that location.1198

Unlike previous Concurrent Separation Logics (OHearn, 2007; Hobor et al.,1199

2008) that focuses on programs with critical sections, locks, and channels re-1200

spectively, the approach uses barriers to model resource redistribution, and1201

verifies if barriers are accessed safely in a concurrent environment. The idea1202

is to associate some positive (fractional) share of the barrier itself as a pre-1203

condition and to ensure that the sum of all preconditions entails full share1204

of the barrier.1205

For example, the assertion barrier(bn, π, cs) defines a pre-condition that1206

specifies a barrier bn with a positive share π having a state cs that holds1207

before entering a barrier. The state of barrier changes as threads are released1208

from the barrier, and the next stage will follow based on the post-condition1209

barrier(bn, π, ns), when the state transitions to a new state ns. A full1210

permission ensures that no thread has a ’stale’ view of the barrier state1211

38

to ensure thread non-interference. The approach extends HIP/SLEEK tool1212

set (Gherghina et al., 2011; Nguyen and Chin, 2008) to verify concurrent1213

programs with barrier calls. SLEEK is based on Separation Logic and HIP1214

applies Hoare’s rules to program verification.1215

Later, Jacobs and Piessens (2011) in his work on fine-grained concur-1216

rency verified some of the program examples using the VeriFast tool. The1217

sample programs were taken from the HIP/SLEEK project and experiments1218

were performed by implementing the barrier calls as locks. The experi-1219

ments revealed that VeriFast poses more annotation overhead compared to1220

HIP/SLEEK tool. For example, authors reported that in the HIP/SLEEK1221

project, programmers need to add approximately 30 lines of annotation for1222

a program with 30 lines of source code where as in VeriFast, more than 6001223

annotated lines were required, as user input, to verify the same program.1224

Pulse1225

Pulse (Siminiceanu et al., 2012) is an automatic formal verification ap-1226

proach and a tool that verifies the correctness of Plural (permission-based1227

typestate contracts) specification itself, rather than the program implemen-1228

tation and its behavior. The goal was to write semantically correct specifi-1229

cations to verify program behavior based on these specifications. Like Plural,1230

Pulse follows the Design by Contract Principle to specify permission-based1231

contracts at method level. It supports five kinds of symbolic permissions:1232

unique, full, share, pure and immutable in method specifications.1233

In Pulse, programmers specify design intents as permission-based types-1234

tate invariants and lock-based specifications at the code level to avoid dead-1235

locks and data races. State invariants are used to enforce the properties1236

that should hold during program execution and to handle the design level1237

inconsistencies in a program such as Null pointer references.1238

In an extended work, Cataño et al. (2014) evaluated the efficacy and1239

expressiveness of Plural specifications on a multi-threaded application called1240

Multi-threaded Task Server (MTTS), to evaluate its design and verify its1241

behavior using Pulse.1242

Listing 9 shows lock-based typestate contracts in MTTS using Plural spec-1243

ifications.1244

Listing 9: Lock-based typestate contracts using access permissions in MTTS (Cataño
et al., 2014).

1245
1 @Perm(requires="Full(this) in NotAcq", ensures="Full(this) in Acq")1246

2 public abstract void acquire() { }1247

39

3 @Perm(requires="Full(this) in Acq", ensures="Full(this) in NotAcq"1248

4 public abstract void release() { }1249

5 }12501251

Pulse defines lock-based specifications to ensure mutual exclusion to a1252

critical section. The annotations ‘Acq’ and ‘NotAcq’ are used to represent1253

the state of a lock i.e., to be acquired or not-acquired respectively. The1254

locks are acquired using method acquire() in Line 2 and released using1255

method release() in Line 3. The permission contract in Line 1, dictates1256

that the acquire() method needs Full permissions, as pre-permission on the1257

mutex (lock) object while acquiring a lock, and transitions it from ‘NotAcq‘1258

into ‘Acq’ typestate. Similarly, the specification in Line 3 shows that the1259

release() method, before releasing the lock, needs Full permissions on the1260

lock object that is in ‘Acq’ state and transitions it from ‘Acq’ into ‘NotAcq’1261

typestate.1262

The code of the critical section is then enclosed between a call to method1263

acquire() and a call to method release() to ensure mutual exclusion.1264

The typestate transition in the given specification ensures that non-nested1265

calls to method acquire() will always happen after a call to release()1266

method. The permission contract ensures that if a thread has acquired a1267

lock, it needs to be released before being used by other threads. However,1268

as discussed previously, Plural does not support the reachability analysis of1269

input specifications and cannot verify the absence of deadlocks caused by the1270

input specifications. Pulse avoids deadlocks by using try-catch-finally1271

statement in the code and enclosing call to method release() in a finally1272

block to ensure that method release() is always called regardless of the1273

termination status of the method.1274

Additionally detects violations of intended semantics using the model1275

checking power of evmdd-smc (Roux and Siminiceanu, 2010) symbolic model1276

checker. It helps programmers write semantically correct specifications and1277

find possible concurrency at the method level, but to exploit the full potential1278

of the Pulse tool, the programmers need to manually add permission-based1279

typestate specifications in the source program, resulting in annotation over-1280

head for the programmers. The authors reported that “it took six months1281

on manually adding the specifications for 49 Java classes with 14,451 lines of1282

source lines of Java code and 546 annotated lines of permission-based speci-1283

fications in MTTS”. Moreover, in Pulse, the use of model checker can create1284

state-space explosion problems even for a program of average size.1285

Ahmed and Cataño (2018) proposed an automatic translation technique1286

40

that encodes JML-encoded Finite State Machine (FSM) specification of a1287

Java program into Plural specifications (permission-based typestate contracts).1288

The encoded specification was fed into Pulse to find problems such as un-1289

reachable states, unreachable methods and sink states (deadlocks) in the1290

input specifications, and to reason about the correctness of the underlying1291

program before it is implemented.1292

HJp1293

Westbrook et al. (2012) proposed a permission-based type system that1294

supports task parallelism, array parallelism, and object isolation. The system1295

called ‘Habanero Java with permissions (HJp)’ is an extension of their pre-1296

vious work on the Habanero Java (HJ) language. “HJ itself is a task-parallel1297

extension of Java language” (Cav et al., 2011). The main idea of HJp is that1298

each object can be in any of the two permission modes, i.e., shared read1299

or private read-write, at any moment of time. The shared read model1300

specifies that any task (thread) can read from the object but none of them is1301

allowed to write on it and private read-write mode shows that only one1302

task is permitted to read from or write to the object. The system provides a1303

practical solution to prevent data races for non-trivial parallel programs im-1304

plementing multiple synchronization primitives, and parallel patters instead1305

of just one.1306

The type system extend Boyland’s fractional permissions with two new1307

permission types: aliased write and storable permission. Unlike previ-1308

ous approaches (Bierhoff and Aldrich, 2007) where write (unique) permission1309

is only supported for non-aliased objects at any one time, the aliased write1310

permission supports write operations on aliased objects. In the system, mul-1311

tiple threads can write on multiple objects without actually having unique1312

permissions on them, as long as the permissions are not passed to other1313

threads. The storable permission provides a new and simple way for ex-1314

pressing transitive permission in complex objects such as linked list. Storable1315

permission associates permission to the ‘whole tree of objects’ instead of as-1316

sociating it to a single object. The permissions transitivity between objects1317

is managed by defining exclusive fields ,using the exclusive keyword, at1318

the class level. This feature makes the technique different from existing ap-1319

proaches that require more technical machinery, and sound approximations,1320

to manage permission transitivity in complex objects. Further, the language1321

adds keywords such as reading, shared reading, writing and exclusive, to1322

indicate permissions held by the method arguments on entry to and exit1323

41

from the method. Similarly, the keywords acquire and release are used to1324

acquire and release aliased-write and storable permissions on the refer-1325

enced objects or fields.1326

Table 9: Summary of the annotation overhead for the sample programs in HJp (Westbrook
et al., 2012).

Program Statistics and Annotation Overhead

Program SLOC(Methods) #LOC-MK #LOC-SP # AnnLOC

NPB.CG 1070 (61) 25 7 32

JGF.Series 225 (15) 6 3 9

JGF.LUFact 467 (20) 16 11 27

GF.SOR 175 (12) 6 4 10

JGF.Moldyn 741 (57) 9 29 38

JGF.RayTracer 810 (67) 57 22 79

BOTS.NQueens 95 (3) 3 0 3

BOTS.Fibonacci 70 (3) 0) 0 0

BOTS.FFT 4480 (46) 33 0 0

PDFS 537 (26) 10 8 0

DPJ.BarnesHut 682 (56) 18 10 28

DPJ.MonteCarlo 2877 (287) 151 22 173

DPJ.IDEA 228 (18) 9 8 17

DPJ.CollisonTree 1032 (69) 108 24 132

DPJ.K-Means 501 (38) 25) 6 31

VerCors1327

Blom et al. (2014) proposed a simplified version of Kernel Programming1328

Language (Betts et al., 2012) and a permission-based Separation Logic to1329

42

reason about the correctness of the GPU kernel written in OpenCl2. As the1330

GPU kernel extensively uses threads to support parallelism, the objective1331

was to verify the functional correctness of GPU programs and to ensure data1332

race freedom in the underlying architecture.1333

The work follows an earlier work of Haack and Hurlin (2008) on verifi-1334

cation of the muti-threaded programs in which a thread can only access or1335

update a particular memory location if it has permission to read or write. The1336

permission in a program are provided, in the form of barrier specifications,1337

using the read-write (rw) or read-only (rd) annotations. Multiple threads1338

with read permissions can access the same location but only one thread can1339

hold write permission at a time to change its content. The specifications com-1340

bine first-order logic formulas with permissions-based accessibility predicates1341

and the separating conjunction operator (*). The same idea was applied to1342

delegate permissions across work groups and then to distribute permissions1343

over threads.1344

The approach was validated using the VerCors project3 (Amighi et al.,1345

2012). VerCors is a program verifier for concurrent data structures. It sup-1346

ports both OpenCL and Java. The specification language and program logic1347

in VerCors is based on earlier work on permission-based Concurrent Separa-1348

tion Logic (Haack et al., 2008) that supports Java. It uses Silicon (Juhasz1349

et al., 2014) as a back-end verification tool which natively supports an ex-1350

pressive permission model. Moreover, VerCors exploits verification power of1351

Chalice (Leino et al., 2009) and Boogie (Barnett et al., 2006) as program1352

verifier. It encodes an annotated input program into series of intermedi-1353

ate representations and generates verification problems, understandable by1354

Chalice or Boogie, to be verified by the SMT solvers based on the input1355

specifications.1356

However, the approach creates annotation overhead for programmers to1357

add permission-based specifications in the program, as authors reported1358

themselves “writing annotations can be very tedious. Not only is it nec-1359

essary to write the contract for every method, it is also necessary to include1360

many hints to the prover inside the code”.1361

Further, VerCors in (Amighi et al., 2014) extends JML specifications with1362

2Khronos OpenCL Working Group, The OpenCL specification, http://www.khronos.
org/opencl/

3https://fmttools.ewi.utwente.nl/redmine//projects/vercors-verifier/

wiki/Puptol/

43

http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
https://fmttools.ewi.utwente.nl/redmine//projects/vercors-verifier/wiki/Puptol/
https://fmttools.ewi.utwente.nl/redmine//projects/vercors-verifier/wiki/Puptol/

fractional permissions to reason about the functional correctness of Java pro-1363

grams. The approach supports multiple synchronization primitives in a Java1364

program. The permission-based contracts and class invariants are defined in1365

the input program, using conjunction operator ∗ in the Separation Logic, as1366

JML comments. Access permissions are specified using propositional formula1367

of the form Perm(e.f, π) where π represents fractional permission in the1368

range (0, 1] assigned to an individual field f of object e. The permissions1369

are then transferred between threads at synchronization points and analyzed1370

with the execution of program. Although, VerCors tool can generate many1371

of the specifications itself, the annotation overhead in specifying permission-1372

based contract in the input program is still a concern in this work, also1373

evident from the authors perspective “our specification method in principle1374

is very verbose, specifications at many different levels are required”.1375

Listing 10 shows a sample Java class point in VerCors with permission-1376

based access predicates. In Line 2, a state predicate state(frac p) speci-1377

fies that p permission is required on disjoint locations, this.x and this.y1378

in memory. These predicates are then used to specify permission contract1379

for the same locations at the method level. For example, the pre-condition1380

state(1) of method set() in Line 5 specifies that the method requires full1381

(write) permission on locations x and y, and the post-condition ensures1382

state(1) ensures that the method returns the same permission on the cor-1383

responding locations when it exits. The invariant clause, in Line 4 specifies1384

a functional property that both points should be in the first or third quarter1385

of its cartesian space.1386

Listing 10: A Java class Point example in (Amighi et al., 2014).
1387

1 public class Point{1388

2 //@ resource state(frac p) = Perm(this.x, p) ∗ Perm(this.y, p);1389

3 private int x, y;1390

4 //@ invariant (x >= 0 && y >= 0) (x <= 0 && y <= 0);1391

5 //@ requires state (1); ensures state (1);1392

6 public void set(int xv , int yv){ this.x = xv; this.y = yv; }1393

7 //@ given frac p; requires state(p); ensures state(p);1394

8 public void plot(){}1395

9 //@ given frac p; requires state(p); ensures state(p);1396

10 public int getQuarter (){}1397

11 }13981399

The contracts of methods plot() and getQuarter() in Line 8 and Line 101400

respectively, specify that both methods require read permission p on locations1401

x and y, which means that they can be executed simultaneously by multiple1402

threads without the fear of data races. This is because the the pre-conditions1403

44

of both are disjoint with respect to memory. This is not true for the method1404

set() as it requires full permission on the same locations.1405

Instead of simply defining the amount in fractions of permission trans-1406

ferred, Huisman and Mostowski (2015) extended the previous fractional per-1407

mission model in VerCors by having symbolic expressions which include the1408

kind of transfer applied to permission, and the owner of the transferred per-1409

mission. The approach facilitates high-precision, complex synchronization1410

scenarios in concurrent data structures, and supports permission tracking1411

at a high level of abstraction as compared to the previously mentioned ap-1412

proaches such as Veri-Fast (Jacobs et al., 2011) and Chalice (Leino et al.,1413

2009).1414

In this approach, the program is annotated with symbolic (permission)1415

expressions using JML annotations in the functional style. The analysis then1416

tracks the owners using permission expressions and checks their permission1417

return paths to reason about their behavior. The system identifies permission1418

owners using object references and manages a list of owners. Whenever1419

permissions are assigned to some owner, it is being added in the list and1420

when an owner returns permissions, it is removed from the list. Each owner1421

is considered as a permission slice. If all slices refer to the same owner, it1422

means that the owner would have full permission. Otherwise, access is1423

partial (read).1424

Listing 11 shows a sample read and write resource locking mechanism in1425

Java in fractional permissions style. The Line 2 specifies that acquiring a lock1426

(cl) transfers full (1) permission for location o.x to the locking thread and1427

a read permission (1/2) for location o.y to access these locations. When the1428

lock is released, in Line 4, the current thread transfers the same permission1429

back to the lock object.1430

Listing 11: A simple lock and its fractional permission style specifications
(Huisman and Mostowski, 2015).

1431
1 class Client {1432

2 cl.lock(); // produces Perm(o.x, 1) and Perm(o.y, 1/2)1433

3 o.x = o.y; // write o.x, read o.y1434

4 cl.unlock (); // consumes Perm(o.x, 1) and Perm(o.y, 1/2)1435

5 . . . }1436

6 class Lock {1437

7 //@ requires !locked; ensures locked;1438

8 //@ ensures Perm(o.x,1) ∗∗ Perm(o.y,1/2);1439

9 void lock();1440

10 //@ requires Perm(o.x,1) ∗∗ Perm(o.y,12);1441

11 //@ requires locked; ensures !locked;1442

12 void unlock ();1443

13 }1444

45

1445

Listing 12 shows a code segment of a simple resource locking mechanism.1446

Before acquiring the lock, permissions for location o.x and o.y are mapped1447

to list cl (Line 2),as both of them belong to cl. In Line 3, acquiring a1448

lock assigns full permission on o.x to the locking thread represented as ct1449

while it gets partial permission (one slice only) for location o.y and the list1450

becomes [ct, cl] in Line 3. which means that lock still owns the remaining1451

1 slice on y that can be made available when required. The post-condition1452

of method lock() specifies how permission to object o.x and o.y changes1453

when function lock and unlock are called. It shows that the transfer function1454

transPerm() in Line 8, forces its owner thread ct to give up all the rights1455

completely on o.x while function transPermSplit(), in Line 9 transfers the1456

old permission in slices to the specified thread ct.1457

When function unlock() is called, (Line 5) permissions are returned to1458

lock by replacing current thread ct with cl permission, on o.x and [cl,1459

cl] on o.y that can be merged again into object lock permission [cl]. The1460

method unlock is not specified here due to brevity.1461

This information is then used to manage permissions at synchronization1462

points while threads are being forked or joined and to reason about their1463

behavior1464

Listing 12: A simple lock specification in (Huisman and Mostowski, 2015).
1465

1 class Client {1466

2 // Perm(o.x), Perm(o.y) are [cl]1467

3 cl.lock(); // Perm(o.x) becomes [ct], Perm(o.y) becomes [ct, cl]1468

4 o.x = o.y; // [ct] → write access , [ct , cl] → read access1469

5 cl.unlock (); // Perm(o.x) becomes [cl], Perm(o.y) becomes [cl, cl]1470

6 . . . }1471

7 class Lock {1472

8 //@ ensures Perm(o.x) == transPerm(this , ct, \old(Perm(o.x)));1473

9 //@ ensures Perm(o.y) == transPermSplit(this , ct, \old(Perm(o.y)));1474

10 void lock(); . . .}14751476

The permission theory was formalized in the KeY tool (Beckert et al., 2007),1477

an interactive verifier for Java, that is based on dynamic logic. The system1478

extends KeY tool with permission accounting to verify program properties1479

that are based on purely first-order reasoning. The general program prop-1480

erties that require structural induction proofs are validated using the PVS1481

tool (Owre et al., 1992), because of its automated deduction and theorem1482

proving capability.1483

Amighi et al. in (Amighi et al., 2015) proposed a variant of OHearn’s1484

46

Concurrent Separation Logic (OHearn, 2007) to perform practical reasoning1485

of Java-like concurrent programs having main concurrency primitives such1486

as dynamic thread creation, thread joining, wait-notify scenarios and lock1487

reentrant mechanism.1488

The system combines Parkinson’s share model with Boyland’s fractional1489

permissions to support inheritance of resource invariants and class parame-1490

ters and to avoid data races in realistic applications.1491

In Parkinson share model, resource invariants are defined using abstract1492

predicates at class Object level, with an empty footprint (permissions asso-1493

ciated with a memory location) that each subclass extends to hold additional1494

fields. Like Parkinson’s share model, access for a particular heap location is1495

maintained using a resource’s invariant property, where 1 represents full (ex-1496

clusive) permission to a heap location, and a fractional value in the interval1497

(0, 1) defines the concurrent read access of a particular location. The idea1498

is that a thread having partial permission is not allowed to write on a heap1499

location and the total permission to access a heap location cannot exceed 1.1500

Like the OHearn’s approach, when a thread acquires a lock, it gets access1501

to part of a heap location specified as a resource’s invariant property. Upon1502

unlocking, it transfers access of the same resource back to lock, to re-establish1503

the resource’s invariant property. The permissions are transferred between1504

threads at the time of thread creation, thread joining and at lock entrances1505

and reentrance points. However, the verification is performed at the cost1506

of manually writing specification as a part of input program that creates1507

annotation overhead for programmers.1508

Viper1509

Müller et al. (2017) developed a verification infrastructure called Viper.1510

It targets a sequential, object-based intermediate language Silver that en-1511

codes a flexible permission model and supports user-defined predicates and1512

functions. The infrastructure includes two back-end verifiers and four front-1513

end tools for Chalice, Java, Scala, and OpenCL that was developed as a1514

part of VerCors project (Blom and Huisman, 2014). A Viper program does1515

not have classes and an object can access every field declared in a program.1516

Moreover, there is no implicit receiver object for methods and functions.1517

In a Viper program, a programmer defines accessibility predicates (Parkin-1518

son and Bierman, 2005), as permission-based pre- and post-conditions and1519

loop invariants for heap structures to verify its behavior. For example, the1520

predicate acc(e1.f, e2) represents the permission defined for the field f1521

47

that belongs to a reference e1. The optional expression e2 represents the1522

amount of permission, that is full (write) permission by default unless oth-1523

erwise specified explicitly. A method can access a particular heap location1524

if the appropriate permissions are held by that location. The permissions1525

are then transferred between method execution and the loop body to ver-1526

ify program behavior based on the input specifications rather than using its1527

implementation.1528

Listing 13 shows a sample sorted integer list data with access predicates1529

in a Viper program. Line 1 declares an integer list as a data field of sequence1530

data type. The macro sorted(s) in Line 2 sorts input list s in ascending1531

order. The insert method adds a new element elem in the Ref list and1532

returns the index idx where the new element was inserted.1533

Listing 13: A sorted integer list and its specifications in Viper (Müller et al., 2017).
1534

1 field data: Seq[Int]1535

2 define sorted(s) forall i: Int , j: Int :: 0 <= i && i < j && j < s1536

3 ==> s[i] <= s[j]1537

4 method insert(this: Ref , elem: Int) returns (idx: Int)1538

5 requires acc(this.data) && sorted(this.data)1539

6 ensures acc(this.data) && sorted(this.data)1540

7 ensures 0 <= idx && idx <= old(this.data)1541

8 ensures this.data == old(this.data)[0.. idx] ++1542

9 Seq(elem) ++ old(this.data)[idx ..]{1543

10 idx := 01544

11 while(idx < this.data && this.data[idx] < elem)1545

12 invariant acc(this.data , 1/2)1546

13 ...1547

14 { idx := idx + 1 }1548

15 ...1549

16 }15501551

The pre-condition of method insert() in Line 5 specifies that the method1552

requires full permissions on the object list this.data and it should be1553

sorted. The post-condition in Line 6 guarantees that when the method exits1554

it returns the sorted list to the caller with the consumed permission. The1555

second post-condition in Line 7 constrains and thus validates the index, while1556

the third post-condition in Line 8 relates the current state of the list with1557

the method’s pre-state, using an old expression.1558

The insert() method iterates over data list to determine where to insert1559

the new element elem in Line 11. The loop invariant (Line 12) specifies1560

that loop body needs a half (read) permission on the list, while the second1561

half permission would be held by method execution to ensure that the loop1562

body does not modify the list. The Viper’s front-end tools then encode the1563

annotated program into an intermediate language acceptable by the by the1564

48

back-ends tools, to verify its behavior.1565

6. Automatic Inference of Access Permissions1566

Permission-based access notations have been generated as means for pro-1567

gram verification in many approaches (Bierhoff et al., 2009a; Leino et al.,1568

2009; Ferrara and Müller, 2012; Le et al., 2012; Heule et al., 2011, 2013; Sadiq1569

et al., 2016; Dohrau et al., 2018). The generated specifications are either in1570

the form of read/write accesses, fractional or symbolic permissions. The1571

overall goal of these approaches was to relieve programmers from specifica-1572

tion overhead resulting from manually adding permission-based annotations1573

in a source program for verification purpose. Table 10 shows a summary1574

of the work done to infer permission-based specification in sequential and1575

concurrent programs.1576

Table 10: Access permission inference for sequential and concurrent programs.

Reference Prog Lang Tool Analy Perm-
Kind

Perm-
Specs

Perm-
Infer

Anno Properties

Bierhoff et al.
(2009a)

Seq
Plural
(NSL)

Plural (St,D) Sym (U,I,S,F,P) Frac Y VoUP

Leino et al.
(2009)

Con NSL Chalice D Frac
acc(x)
rd(x)‡

access
pure

Y
RCs
DLcks

Heule et al. (2011)
Heule et al. (2013)

Con - Chalice St Frac
acc(x, 1)
acc(x, rd)

full
read

Y RCs

Le et al. (2012) Con NSL VPerm D Frac
@full[ν]
@value[ν]φ

full
zero

Y RCs

Ferrara and
Müller (2012)

Con Scala Sample St -

acc(x, p)
p ∈ (0, 1] ∩R
p ∈ (0, 1] ∩Z,
p ∈ (0, 100]%

Frac
Count
Chalice

Y RCs

Dohrau et al.
(2018)

Con Viper Scala St Frac [0,1]∩R read &
write

Y RCs

Sadiq et al.
(2016, 2019)

Seq Java Sip4J4 St Sym - (U,I,S,F,P)N
EIC,CRA,
INullP

Keys to the table: Seq = sequential, Con = concurrent, St = static, D = dynamic, Sym = symbolic, Fract =1577

fractional, U = unique, I = immutable, S = share, F = full, P = pure, Z = set of Integers, R set of Real numbers, NSL1578

new specification language, RCs = race conditions, EIC = Enabling implicit concurrency, DLcks = deadlocks, INullP =1579

identifying null pointers, CRA = code reachability analysis, VoUP = verification of usage protocols, x heap location, ν1580

represents a non-heap location. rd for the read access. ‡ accessibility predicates.1581

4https://github.com/Sip4J/Sip4J

49

https://github.com/Sip4J/Sip4J

6.1. Inference of Read & Write Accesses1582

As discussed previously, in Section 5.2, Chalice (Leino et al., 2009) is a1583

verification framework that verifies correctness of multi-threaded programs1584

written in the Chalice language. Chalice uses autoMagic, a command-line1585

option, to infer the read and write accesses for the heap locations speci-1586

fied with accessibility predicates. The inferred notations are in the form of1587

pure and access notations that represent read-only and full permission1588

respectively for the specified heap locations.1589

Le et al. (2012) proposed a new permission system to avoid data races1590

in multi-threaded applications having fork/join parallelism. The objective1591

was to ensure the absence of data races for program variables that are not1592

actually heap variables but can be accessed by multiple threads.1593

The scheme infers variable permissions at the method level using procedure1594

specifications. However, in the procedure specification, a programmer ex-1595

plicitly specifies state changes (if any) for the referenced variable accessed by1596

the current thread, using permission-based state invariants without actual1597

variable permission. The generated permissions are in the form of notations1598

such as full or zero where full represents exclusive rights on the refer-1599

enced variable and zero represents the absence of permission. The proposed1600

technique then tracks permission flow between threads to ensure safe access1601

to the shared variables.1602

Listing 14 shows an example procedure specification example in a sample1603

fork-join program. The method creator() takes two variables x and y as ref-1604

erence parameters. The requires clause in Line 2 specifies that the method1605

needs full permission on the referenced variables x and y as pre-permissions1606

when the method is called. The ensures clause specifies that the method1607

should generate the same permissions as post-permissions on the same ref-1608

erenced variables when it exits (Line 3). The state changes are represented1609

using prime ′ notation. For example, the specification “y′ = y + 2” in Line 31610

specifies state changes for the referenced variable y that should hold after the1611

method completes its execution. These specifications are then tracked in the1612

system to generate actual variable permissions for the referenced variables.1613

Listing 14: A fork/join program fragment with procedure specifications (Le et al., 2012).
1614

1 int creator(ref int x, ref int y)1615

2 requires @full [x, y]1616

3 ensures @full [y] ∧ y′ = y + 2 ∧ res = tid and @full[x] ∧ x′ = x + 1 ∧1617

thread = tid;{1618

4 int tid = fork(inc , x, 1);1619

5 inc(y, 2);1620

50

6 return tid;1621

7 }16221623

The proposed scheme was realized in a concurrent program verifier called1624

Vperm5 that verifies the correctness of concurrent applications written in1625

C/C++ language. The approach does not handle phased access to a shared1626

variable by multiple threads, in which case a translation algorithm is used to1627

simulate the affected variables as pseudo-heap locations.1628

6.2. Inference of Fractional Permissions1629

Bierhoff et al. (2009a) proposed a deterministic algorithm to infer permis-1630

sion flow through the program while verifying usage protocols. The objective1631

was to avoid the permission tracking overhead associated with splitting and1632

joining the fractional permission during verification.1633

The algorithm is implemented in the Plural tool (Bierhoff and Aldrich,1634

2008) that performs dataflow analysis of the program with in and out per-1635

missions as developer-provided annotations. The system collects linear con-1636

straints over fractional variables by tracking the flow of permissions in the1637

program. The analysis then ensures the satisfiability of constraints in a mod-1638

ular fashion. The approach supports polymorphism over fractions that not1639

only facilitates modular reasoning of the program, but also avoids impreci-1640

sion in loops by allowing permission consumption inside loops. Furthermore,1641

the technique automatically infers loop invariants in a program.1642

Ferrara and Müller (2012) proposed a permission inference technique to1643

infer fractional and counting permissions for heap locations in a class-based1644

language having threads and monitors. The technique performs static anal-1645

ysis of the source program and inference is based on abstract interpretations1646

(Cousot and Cousot, 1977), a theory for defining and soundly approximating1647

the semantics of a program. The approach firstly computes symbolic values1648

(approximations) for each heap location using the pre- and post-conditions1649

and lock invariants defined at the method and class level respectively. It1650

then infers constraints over these symbolic values to reflect permission-based1651

intermediate representation for the heap locations. Finally, it generates spec-1652

ifications in the form of fractional (value between 0 and 1) and counting (value1653

between 0 and Integer:MAX VALUE) permissions for each heap location in1654

the program.1655

5http://loris-7.ddns.comp.nus.edu.sg/project/vperm/.

51

http://loris-7.ddns.comp.nus.edu.sg/project/vperm/.

The symbolic permissions (AV) for each heap location are calculated as
“the summation of symbolic values si multiplied by integer coefficients ai (to
represent how many times the permission is consumed or returned) and an
integer constant c” (see Formula 4). The integer constant c represents full
permission that is inhaled when an object is created.

AV =
∑
i

ai ∗ si + c,where ai, c ∈ R, si ∈ SV (4)

For example, the expression 1 ∗ Pre(C,m,c:f) + 1 ∗ MI(C,c:f) + 01656

represents symbolic permissions computed for each heap location (c:f) in1657

method m() of class C where Pre(C,m,c:f) represents the symbolic value1658

(si) assigned to location (c:f), as pre-condition before acquiring a lock, and1659

the notation MI(C;c:f) represents monitor (MI) acquired on location c:f.1660

Further, the notation Post(C,m,c:f) represents a symbolic value assigned1661

to a heap location,as post-condition, to get the original permission back on it1662

when the monitor is released. The technique then infers constraints over these1663

symbolic values to generate actual permissions as fractional permissions.1664

The inference technique is implemented in Sample (Static Analyzer of1665

Multiple Programming LanguagEs)6 that supports programs written in Scala1666

(Odersky et al., 2004). Listing 15 shows the OwickiGries (Owicki and Gries,1667

1976) program fragment as an input program. In the example, all expressions1668

are self explanatory except the old expression old (c.c1), in Line 4, that1669

allows post-conditions to refer back to the pre-state of a referenced variable1670

and its associated predicates.1671

Listing 15: The OwickiGries program (fragment) with method level specifications in
(Ferrara and Müller, 2012)

1672
1 class W1 {1673

2 var c : Cell;1674

3 method Inc()1675

4 ensures c.c1 == old(c.c1) + 1{1676

5 acquire c;1677

6 c.c1 := c.c1 + 1;1678

7 release c;1679

8 }1680

9 }16811682

In method Inc(), between acquire c and release c clauses (Line 5 and1683

7), the current thread is assigned with a symbolic permission 1 ∗ Pre(W1, Inc,1684

6http://www.pm.inf.ethz.ch/research/sample.html

52

http://www.pm.inf.ethz.ch/research/sample.html

c:c1) + 1 ∗ MI(Cell, c:c1) for location c : c1. When method exits (Line 9), is1685

gets the symbolic permission 1 ∗ Pre(W1, Inc, c:c1) = 1 ∗ Post(W1, Inc, c:c1)1686

as post-condition since the monitor of c is released. Solving constraints over1687

these symbolic values, the system generates full (1) as fractional permission1688

for location c:c1 when method completes its execution and control is passed1689

to Line 8.1690

The system works very well for Chalice lattice domain. However, the1691

analysis based on fractional permissions is challenging and sometimes, the1692

system converges the generated permissions back to zero to explicitly ter-1693

minate analysis. Moreover, it provides limited support to infer permission1694

contracts for programs having recursive data structures. The rate of infer-1695

ring permission contracts for such programs is at minimum 36% and 68% at1696

maximum. Moreover, like Chalice, manually annotating code with pre and1697

post-conditions and monitor invariants creates significant annotation over-1698

head for programmers.1699

In an extended work of Ferrara and Müller’s permission inference, Dohrau1700

et al. (2018) proposed a static analysis to infer permission-based contracts for1701

array manipulating concurrent programs. The technique is based on Separa-1702

tion and related logics (Reynolds, 2002; Smans et al., 2009). The idea is to1703

explicitly associate a separate (fractional) permission for each array element1704

to specify its accessibility by parts of the program. The value 1 represents1705

full access while rd, a positive fraction of permission, represents the con-1706

current (read) access to a memory location. The analysis then infers read1707

and write accesses for the specified memory locations to generate permission1708

contracts at the method-level and within loop.1709

For example, the approach associates each array element say qa[qi] with a1710

fraction of permission using a conditional expression of the form qa = array∧1711

qi = index ? 1 : 0 that specifies full permission (1) for element array[index]1712

and no permission for all other elements. The permission required for each1713

loop iteration is computed using a maximum expression that calculates the1714

maximum of permission required by each referenced variable changed in a1715

particular loop iteration. The whole (complete) loop execution depends on1716

the maximum of all the fractions over all loop iterations. It is used to infer1717

read and write specifications for all indices of an array, for the whole loop.1718

However, it is generally acknowledged that tracking concrete fractional1719

values is a cumbersome task for programmers especially when fractions con-1720

tinue to decrease indefinitely for a particular scenario (Heule et al., 2013).1721

Moreover, the use of fractional permissions makes the specifications too low-1722

53

level which can be tedious to add manually and harder to reuse and adapt1723

for programmers.1724

6.3. Inference of Symbolic Permissions1725

Heule et al. (2011, 2013) proposed a technique to automatically con-1726

vert fractional permissions into abstract read/write permissions for shared-1727

memory concurrent programs. The objective was to specify concurrent con-1728

structs such as fork/join threads, locks/monitors with abstract permissions1729

to avoid the complex reasoning overhead associated with fractional shares.1730

The abstract read permissions allow programmers to reason at a high-1731

level of abstraction than using the fractional values for reading. The objec-1732

tive was to avoid the complex reasoning overhead associated with handling1733

concrete values in fractional permissions during verification. The proposed1734

methodology is implemented in Chalice. The system generates two kinds1735

of permissions i.e., full and read. Like Chalice, it takes a program anno-1736

tated with accessibility predicates such as acc(x.f,1) and acc(x.f, rd)1737

at method level. The value 1 is mapped to represent the full (read and1738

write) permission and rd represents the shared read permission (a part of1739

permission that is not full) for the referenced object x.f. Moreover, the sys-1740

tem automatically computes read (rd) permission instead of programmers1741

having to compute this value explicitly.1742

Sadiq et al. (2016, 2019) developed a permission inference framework for1743

sequential Java programs. The aim was to free programmers from specifica-1744

tion overhead to manually annotate program with permission-based contracts1745

to help enable implicit concurrency present in the system.1746

The permission inference approach performs inter-procedural static anal-1747

ysis (data flow and alias flow analysis) of the source code. It automatically1748

extracts the implicit dependencies present between the code (methods) and1749

shared states in the source program and maps them in the form of five types1750

of symbolic permissions such as unique, full, immutable, pure, and share,1751

without using any method level specifications. Further, it automatically1752

generates Plural specifications i.e., access permission contracts, using a sin-1753

gle typestate ‘alive’, for the objects accessed at the method level, to verify1754

correctness of the inferred specifications by the existing model-checking tool1755

i.e., Pulse and to reason about their concurrent behavior.1756

Listing 16 shows sample methods getColl() and initColl() with the1757

inferred access permission contracts in Plural format. The proposed technique1758

generates pure permission as pre-permission (Line 3) on the receiver object1759

54

(this) as method getColl() read the referenced field (coll). Further, it1760

generates full permission on this in method initColl() (Line 5) as method1761

writes on coll. Following the Design by Contract Principle, the consumed1762

permission are generated as post-permissions for the referenced objects when1763

a method completes its execution.1764

Listing 16: The inferred permission contracts in Sip4J (Sadiq et al., 2019)
1765

1 class ArrayColl{1766

2 Integer [] coll;1767

3 @Perm(requires="pure(this) in alive", ensures="pure(this) in alive")1768

4 public static void getColl (){ return this.coll;}1769

5 @Perm(requires="full(this) in alive", ensures="full(this) in alive")1770

6 public static void initColl (){1771

7 for (int i = 0; i < 10; i++){this.coll[i] = i*2;}1772

8 }17731774

55

Table 11: Annotation Overhead computed for the benchmark programs in (Sadiq et al.,
2019).

Program Statistics and Annotation Overhead

Benchmark Program SLOC Methods #AnnLOC #Annot.

Plural Crystal 17,512 2,188 2,500 6,691

- Pulse 7,671 461 513 4,850

JGB

montecarlo 1,370 196 204 1,975
euler 1,080 51 52 1,073
search 666 50 60 691
moldyn 608 43 52 901
lufact 549 42 50 437
crypt 488 40 46 385
series 359 37 43 207
sor 354 34 42 267
sparsemat 327 33 36 316

Æminium

blacksholes 437 21 56 694
gaknapsack 232 50 38 250
health 232 18 25 334

Plaid

webserver 143 12 11 11
fft 91 11 16 44
quicksort 66 9 13 17
shellsort 58 7 10 44
integral 40 5 7 17
fibonacci 22 4 8 9

- Example 71 12 15 78

- Total 32,376 3,111 3,485 18,647

7. An Insight into Research Challenges and Future Directions1775

Access permissions (Boyland, 2003; Bornat et al., 2005; Bierhoff and1776

Aldrich, 2007) are a novel abstraction that can model read and write effects1777

of a referenced object as well as its aliasing information. Access permission1778

sharing and accounting models attained considerable attention in the research1779

56

community in the last decade because of their rich expressiveness and sound1780

reasoning capabilities to specify and verify the correctness of shared-memory1781

programs.1782

This survey organizes the permission-based verification of single- and1783

multi-threaded programs into three dimensions according to the use of ac-1784

cess permissions and their aims: verifying the correctness of API protocols1785

(Section 4), avoiding synchronization problems in multi-threaded programs1786

(Section 5) and inferring automatically permission-based specifications (Sec-1787

tion 6). Table 3, 7 and 10 summarizes and contrasts the surveyed works1788

based on the analysis criteria defined in Section 1.1789

Our analysis shows that although access permissions have been used to1790

provide a sound reasoning mechanism to verifying program behavior, the1791

existing permission-based verification approaches are limited in their support1792

for verification due to the following reasons.1793

Permission Annotation Overhead. The common problem with all the1794

permission-based verification approaches is the annotation overhead1795

associated with the need to manually add permission-based dependen-1796

cies (invariants, contracts, assertions, etc.) or other access notations, to1797

explicitly specify state changes and grant or restrict access to multiple1798

references (threads), on the shared memory locations. It is generally1799

acknowledged that manually annotating programs is laborious, chal-1800

lenging and time-consuming.1801

Permission Verification Overhead. Given the intricacies in creating permission-1802

based specifications, it is very likely for a programmer to omit impor-1803

tant dependencies or extract the wrong dependencies (read instead of1804

write). Moreover, there is no guarantee that the manually added spec-1805

ifications are spelled correctly (free of typo errors) and follows their1806

intended semantic (defined in Section 3) that in turn pose overhead for1807

verifying the correctness of the input specifications itself.1808

Although some of the existing approaches (Siminiceanu et al., 2012)1809

present solution to this problem, by identifying the missing specifi-1810

cations and by verifying that, the specifications follow their intended1811

semantics, the techniques themselves are limited in ensuring whether1812

the program implementation complies with the input specifications and1813

vice versa. This is because the analysis is based on input specifications1814

rather than program implementation. Furthermore, although, access1815

57

permissions support modular reasoning of a program behavior without1816

analyzing the entire program analysis, certain program properties such1817

as global invariants and liveness, are hard to verify.1818

Permission Tracking Overhead. Existing verification and parallelization1819

approaches use different forms of permission types such as fractional1820

permissions, based on their expressiveness and to facilitate the ease1821

of analysis. The runtime systems then analyzes the permission flow1822

through the system to verify program behavior against the specifica-1823

tion and computes the data dependencies in the system based on the1824

specification.1825

In particular, fractional permissions use fractional style to express the1826

access rights for a reference in the range (0, 1] but its analysis is chal-1827

lenging for programmers, due to the overhead associated with tracking1828

the splitting and the joining of concrete values. It is generally acknowl-1829

edged that tracking fractional values in a program is a cumbersome1830

task for programmers. The situation becomes more serious when frac-1831

tions are split into multiple levels, which may create concerns relating1832

to the proper termination of the analysis and affects the soundness of1833

the technique itself.1834

Counting permissions are complementary to fractional permissions but1835

they do not support all types of synchronization primitives. Symbolic1836

permissions combine the access rights and aliasing information of a1837

reference and have been used to allow programmers to reason about1838

the program correctness, against specification at a higher level of ab-1839

straction than fractional or counting permissions. Therefore, automatic1840

inference of permission-based specifications in the form of symbolic val-1841

ues is desirable to free the programmers from the low-level analysis1842

overhead associated with adding and tracking concrete values in the1843

program.1844

1845

In addition to the specification overheads and related problems discussed1846

above, the following factors may also hinder the wider adoption of existing1847

permission-based verification approaches.1848

Languages and Tools. Existing permission-based verification and paral-1849

lelization approaches are mostly based on formal specification lan-1850

guages and type systems to support access permission as part of the1851

58

language. It can be challenging for most programmers who may not1852

be adept at the new syntax and semantics in order to exploit their1853

functionalities. Furthermore, most of these approaches are either re-1854

search prototypes or developed in languages that are not commonly1855

used for general-purpose software development. These factors could1856

limit the adoption of the existing approaches to verify programs writ-1857

ten in mainstream programming languages such as Java.1858

Program Constructs. Existing verification approaches have limited sup-1859

port for synchronization constructs such as fork-join parallelism, atomic1860

blocks or semaphores. There is also limited support for the recursive1861

data structures. Most of the approaches support verification of heap1862

locations, while investigation on non-heap locations has not been as1863

prevalent. These limitations restrict their ability to verify real-world1864

applications.1865

Program analysis. Existing approaches either perform static and dynamic1866

program analysis or employ model-checking techniques to verify pro-1867

gram properties. All have their own pros and cons that affect the1868

scalability of these approaches when analyzing program constructs and1869

verifying the program behavior. For example, the techniques employ-1870

ing model checkers may face state-space explosion problems even for a1871

program of average size.1872

Properties. Most verification tools focus on certain aspects of the program1873

behavior, such as verifying the correctness of API protocols or avoiding1874

synchronization issues such as data races are just two aspects. Some1875

tools can address a combination of issues, but none of them cover all1876

aspects of a program behavior.1877

Although, existing permission-based verification approaches are quite promis-1878

ing in verifying program behavior. The common problem in all the existing1879

approaches is the annotation overhead associated with the need to manually1880

add the permission-based specifications in the source program. Therefore,1881

the automatic inference of permission-based specifications from the source1882

program can be the first step to exploit the verification power of these ap-1883

proaches, without posing any extra burden on programmers, to enhance their1884

applicability in the IT industry.1885

59

Overall, given the number of different permission-based formal type the-1886

ories and programming models that received remarkable attention over the1887

last decade in the research community, there is an impending need to make1888

these approaches adoptable and adaptable for general-purpose program de-1889

velopment, and verification for mainstream programming languages such as1890

Java.1891

The first step toward this goal can be an integration of the most widely1892

used permission-based verification tools that at least support a common pro-1893

gramming models such as Java. For example, Plural, Pulse, Verifast, VerCors1894

and Sip4J fall in this category.1895

The analysis of existing approaches reveals that the inference of access1896

permission contracts can be used to automatically compute the dependencies1897

between methods while making the side effects explicit. As access permis-1898

sions pose their own ordering constraints, the computed dependencies can1899

be used to automatically infer the synchronization primitives (locking and1900

ordering constraints) from the source code of a sequential program. The1901

generated specifications can then be used to enforce the locking policy to1902

different program parts at different levels of granularity (method, instruction1903

or task). This information can be used to automatically parallelize pro-1904

gram execution for the mainstream programming languages such as Java,1905

to the extent permitted by the computed dependencies, without using any1906

new programming language and runtime system to support access permis-1907

sions. The permission-based parallelization can free the programmers from1908

the low-level synchronization and reasoning overhead associated with han-1909

dling multi-threading in sequential programming paradigms.1910

In addition to supporting the race-free sharing of the heap or non-heap1911

locations in sequential programs, the inference of permission-based synchro-1912

nization constructs (such as acquire and release locks with permission invari-1913

ants) can be used to verify the behavior of concurrent programs, that have1914

already been written using multi-threading, without imposing extra work on1915

the programmer side.1916

The ideal solution to all the above challenges can be the integration of1917

the commonly used abstractions such as typestates and access permissions,1918

as first-class language constructs in the mainstream programming models,1919

to develop a complete, sound, modular, automated and economically feasi-1920

ble framework for everyday program development and verification. The new1921

technique could be realized to provide modelling, verification and paralleliza-1922

tion support without posing any extra burden on programmers.1923

60

Acknowledgment1924

This research was conducted under Endeavour Leadership Award, for1925

P.hD., funded by the Department of Education and Training, Government1926

of Australia and the Faculty of Information Technology, Monash University,1927

under Postgraduate Publication Award.1928

Abadi, M., Flanagan, C., Freund, S. N., 3 2006. Types for Safe Locking: Static Race Detection for Java.1929

ACM Trans. Program. Lang. Syst. 28 (2), 207–255.1930

Ahmed, I., Cataño, N., 2 2018. Checking JML-encoded finite state machine properties. In: 2018 Interna-1931

tional Conference on Advancements in Computational Sciences (ICACS). pp. 1–9.1932

Aldrich, J., Beckman, N. E., Bocchino, R., Naden, K., Saini, D., Stork, S., Sunshine, J., 2012. The Plaid1933

language: Typed core specification. Tech. rep., DTIC Document.1934

Aldrich, J., Bocchino, R., Garcia, R., Hahnenberg, M., Mohr, M., Naden, K., Saini, D., Stork, S., Sunshine,1935

J., Tanter, r., others, 2011. Plaid: a permission-based programming language. In: Proceedings of the1936

ACM international conference companion on Object oriented programming systems languages and1937

applications companion. ACM, pp. 183–184.1938

Aldrich, J., Sunshine, J., Saini, D., Sparks, Z., 2009. Typestate-oriented Programming. In: Proceedings of1939

the 24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems Languages1940

and Applications. OOPSLA ’09. ACM, pp. 1015–1022.1941

Amighi, A., Blom, S., Darabi, S., Huisman, M., Mostowski, W., Zaharieva-Stojanovski, M., 2014. Verifica-1942

tion of Concurrent Systems with VerCors. In: Formal Methods for Executable Software Models: 14th1943

International School on Formal Methods for the Design of Computer, Communication, and Software1944

Systems, SFM 2014, Bertinoro, Italy, June 16-20, 2014, Advanced Lectures. Springer International1945

Publishing, pp. 172–216.1946

Amighi, A., Blom, S., Huisman, M., Zaharieva-Stojanovski, M., 2012. The {VerCors} Project: Setting Up1947

Basecamp. In: Programming Languages meets Program Verification (PLPV 2012).1948

Amighi, A., Haack, C., Huisman, M., Hurlin, C., 2015. Permission-based separation logic for multithreaded1949

java programs. Logical Methods in Computer Science.1950

Ancona, D., Bono, V., Bravetti, M., 2016. Behavioral Types in Programming Languages. Now Publishers1951

Inc.1952

Appel, A. W., Blazy, S., 2007. Separation Logic for Small-Step cminor. In: Theorem Proving in Higher1953

Order Logics. Springer Berlin Heidelberg, pp. 5–21.1954

Araujo, W., Briand, L., Labiche, Y., 2008. Concurrent contracts for Java in JML. In: Software Reliability1955

Engineering, 2008. ISSRE 2008. 19th International Symposium on. IEEE, pp. 37–46.1956

Artho, C., Havelund, K., Biere, A., 2003. High-level data races. In: Software Testing Verification and1957

Reliability.1958

Barnett, M., Chang, B.-Y. E., DeLine, R., Jacobs, B., Leino, K. R. M., 2006. Boogie: A modular reusable1959

verifier for object-oriented programs. In: Formal Methods for Components and Objects. Springer Berlin1960

Heidelberg, pp. 364–387.1961

Beckert, B., Hhnle, R., Schmitt, P. H. P. H., 2007. Verification of object-oriented software : the KeY1962

approach. Springer.1963

61

Beckman, N. E., 2009. Modular typestate checking in concurrent Java programs. In: Proceedings of the1964

24th ACM SIGPLAN conference companion on Object oriented programming systems languages and1965

applications. ACM, pp. 737–738.1966

Beckman, N. E., 12 2010. Types for Correct Concurrent API Usage, PhD thesis, technical report CMU-1967

ISR-10-131. Ph.D. thesis.1968

Beckman, N. E., Bierhoff, K., Aldrich, J., 2008. Verifying Correct Usage of Atomic Blocks and Typestate.1969

In: Proceedings of the 23rd ACM SIGPLAN Conference on Object-oriented Programming Systems1970

Languages and Applications. OOPSLA ’08. ACM, pp. 227–244.1971

Beckman, N. E., Kim, D., Aldrich, J., 2011. An Empirical Study of Object Protocols in the Wild. In:1972

Proceedings of the 25th European Conference on Object-oriented Programming. ECOOP’11. Springer-1973

Verlag, pp. 2–26.1974

Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P., Betts, A., Chong, N., Donaldson, A.,1975

Qadeer, S., Thomson, P., 2012. GPUVerify. In: Proceedings of the ACM international conference on1976

Object oriented programming systems languages and applications - OOPSLA ’12. Vol. 47. ACM Press,1977

p. 113.1978

Bierhoff, Kevin, 2009. Api protocol compliance in object-oriented software.1979

Bierhoff, K., 2011. Automated program verification made SYMPLAR: symbolic permissions for lightweight1980

automated reasoning. In: Proceedings of the 10th SIGPLAN symposium on New ideas, new paradigms,1981

and reflections on programming and software. ACM, pp. 19–32.1982

Bierhoff, K., Aldrich, J., 2007. Modular typestate checking of aliased objects. Vol. 42 of OOPSLA ’07.1983

ACM.1984

Bierhoff, K., Aldrich, J., 2008. PLURAL: Checking Protocol Compliance Under Aliasing. In: Companion1985

of the 30th International Conference on Software Engineering. ICSE Companion ’08. ACM, pp. 971–1986

972.1987

Bierhoff, K., Beckman, N. E., Aldrich, J., 2009a. Polymorphic fractional permission inference. In: Proceed-1988

ings of the 18th ACM SIGSOFT International Symposium on Software Testing and Analysis. ISSTA1989

09.1990

Bierhoff, K., Beckman, N. E., Aldrich, J., 2009b. Practical API Protocol Checking with Access Permissions.1991

In: ECOOP. pp. 195–219.1992

Blom, S., Huisman, M., 2014. The vercors tool for verification of concurrent programs. In: Lecture Notes1993

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in1994

Bioinformatics).1995

Blom, S., Huisman, M., Miheli, M., 2014. Specification and verification of GPGPU programs. Science of1996

Computer Programming.1997

Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M., 1 2005. Permission Accounting in Separation Logic.1998

SIGPLAN Not. 40 (1), 259–270.1999

Boyapati, C., Lee, R., Rinard, M., 2002. Ownership Types for Safe Programming: Preventing Data2000

Races and Deadlocks. In: Proceedings of the 17th ACM SIGPLAN Conference on Object-oriented2001

Programming, Systems, Languages, and Applications. OOPSLA ’02. ACM, pp. 211–230.2002

Boyapati, C., Rinard, M., 2001. A Parameterized Type System for Race-free Java Programs. In: Proceed-2003

ings of the 16th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages,2004

and Applications. OOPSLA ’01. ACM, pp. 56–69.2005

62

Boyland, J., 2003. Checking Interference with Fractional Permissions. In: Proceedings of the 10th Inter-2006

national Conference on Static Analysis. SAS’03. Springer-Verlag, pp. 55–72.2007

Boyland, J., 2006. Why we should not add readonly to Java (yet). The Journal of Object Technology2008

5 (5), 5.2009

Boyland, J. T., 8 2010. Semantics of Fractional Permissions with Nesting. ACM Trans. Program. Lang.2010

Syst. 32 (6), 22:1–22:33.2011

Brookes, S., 2004. A Semantics for Concurrent Separation Logic. Springer, Berlin, Heidelberg, pp. 16–34.2012

Butenhof, D. R., 1997. Programming with POSIX threads. Addison-Wesley Professional.2013

C. Barrett A. Stump, Tinelli, C., 2010. The SMTLIB Standard, Version 2.0.2014

Caires, L., 7 2008. Spatial-behavioral Types for Concurrency and Resource Control in Distributed Systems.2015

Theor. Comput. Sci. 402 (2-3), 120–141.2016

Caires, L., Cardelli, L., 2002. A Spatial Logic for Concurrency (Part II). In: Proceedings of the 13th2017

International Conference on Concurrency Theory. CONCUR ’02. Springer-Verlag, pp. 209–225.2018

Caires, L., Cardelli, L., 11 2003. A Spatial Logic for Concurrency (Part I). Inf. Comput. 186 (2), 194–235.2019

Caires, L., Pfenning, F., 2010. Session types as intuitionistic linear propositions. In: Lecture Notes in2020

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in2021

Bioinformatics).2022

Caires, L., Seco, J. C., 2013. The Type Discipline of Behavioral Separation. In: Proceedings of the 40th2023

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’13.2024

ACM, pp. 275–286.2025

Capriccioli, A., Servetto, M., Zucca, E., 4 2016. An Imperative Pure Calculus. Electron. Notes Theor.2026

Comput. Sci. 322 (C), 87–102.2027

Carr, S. A., Logozzo, F., Payer, M., Aug 2017. Automatic contract insertion with ccbot. IEEE Transactions2028

on Software Engineering 43 (8), 701–714.2029

Cataño, N., Ahmed, I., Siminiceanu, R. I., Aldrich, J., 2014. A case study on the lightweight verification2030

of a multi-threaded task server. Sci. Comput. Program. 80, 169–187.2031

Cav, V., Zhao, J., Shirako, J., Sarkar, V., 2011. Habanero-Java: The New Adventures of Old X10. In:2032

Proceedings of the 9th International Conference on Principles and Practice of Programming in Java.2033

PPPJ ’11. ACM, pp. 51–61.2034

Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H., 6 2004. Modular verification of software components2035

in C. IEEE Transactions on Software Engineering 30 (6), 388–402.2036

Chaki, S., Gurfinkel, A., 2018. BDD-Based Symbolic Model Checking. In: Handbook of Model Checking.2037

Springer International Publishing, pp. 219–245.2038

Chaki, S., Rajamani, S. K., Rehof, J., 2002. Types As Models: Model Checking Message-passing Programs.2039

In: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming2040

Languages. POPL ’02. ACM, pp. 45–57.2041

Clarke, D., stlund, J., Sergey, I., Wrigstad, T., 2013. Ownership Types: A Survey. Springer, Berlin,2042

Heidelberg, pp. 15–58.2043

63

Clarke, D., Wrigstad, T., 2003. External Uniqueness Is Unique Enough. Springer, Berlin, Heidelberg, pp.2044

176–200.2045

Clebsch, S., Drossopoulou, S., Blessing, S., Mcneil, A., 2015. Deny Capabilities for Safe, Fast Actors. In:2046

Proceedings of the 5th2047

Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte, W., Tobies, S.,2048

2009. VCC: A Practical System for Verifying Concurrent C. Springer, Berlin, Heidelberg, pp. 23–42.2049

Cok, D. R., 2011. OpenJML: JML for Java 7 by extending OpenJDK. In: Lecture Notes in Computer Sci-2050

ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).2051

Cousot, P., Cousot, R., 1977. Abstract interpretation: a unified lattice model for static analysis of programs2052

by construction or approximation of fixpoints. In: Proceedings of the 4th ACM SIGACT-SIGPLAN2053

symposium on Principles of programming languages. ACM, pp. 238–252.2054

DeLine, R., Fähndrich, M., 2002. Adoption and focus: Practical linear types for imperative programming.2055

Programming language design and implementation, ACM SIGPLAN.2056

DeLine, R., Fähndrich, M., 2004. Typestates for Objects. In: Odersky, M. (Ed.), ECOOP 2004 – Object-2057

Oriented Programming. Springer Berlin Heidelberg, pp. 465–490.2058

Dezani-Ciancaglini, M., Yoshida, N., Ahern, A., Drossopoulou, S., 2005. A distributed object-oriented2059

language with session types. In: Lecture Notes in Computer Science (including subseries Lecture Notes2060

in Artificial Intelligence and Lecture Notes in Bioinformatics).2061

Dias, R. J., Pessanha, V., Loureno, J. M., 2013. Precise Detection of Atomicity Violations. Springer,2062

Berlin, Heidelberg, pp. 8–23.2063

Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M. J., Vafeiadis, V., 2010. Concurrent Ab-2064

stract Predicates. In: Proceedings of the 24th European Conference on Object-oriented Programming.2065

ECOOP’10. Springer-Verlag, pp. 504–528.2066

Dockins, R., Hobor, A., Appel, A. W., 2009. A fresh look at separation algebras and share accounting.2067

In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and2068

Lecture Notes in Bioinformatics).2069

Dohrau, J., Summers, A. J., Urban, C., Münger, S., Müller, P., 2018. Permission inference for array pro-2070

grams. In: Chockler, H., Weissenbacher, G. (Eds.), Computer Aided Verification. Springer International2071

Publishing, Cham, pp. 55–74.2072

Dolby, J., Hammer, C., Marino, D., Tip, F., Vaziri, M., Vitek, J., 5 2012. A Data-centric Approach to2073

Synchronization. ACM Trans. Program. Lang. Syst. 34 (1), 4:1–4:48.2074

Engler, D., Ashcraft, K., 2003. RacerX: Effective, Static Detection of Race Conditions and Deadlocks. In:2075

Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles. SOSP ’03. ACM,2076

pp. 237–252.2077

Fähndrich, M., Logozzo, F., 2011. Static contract checking with abstract interpretation. In: Proceedings2078

of the 2010 International Conference on Formal Verification of Object-oriented Software. FoVeOOS’10.2079

Springer-Verlag, pp. 10–30.2080

Ferrara, P., Müller, P., 2012. Automatic Inference of Access Permissions. In: Verification, Model Checking,2081

and Abstract Interpretation: 13th International Conference, VMCAI 2012, Philadelphia, PA, USA,2082

January 22-24, 2012. Proceedings. Springer Berlin Heidelberg, pp. 202–218.2083

64

Fillitre, J. C., Paskevich, A., 2013. Why3 - Where programs meet provers. In: Lecture Notes in Computer2084

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-2085

ics).2086

Flanagan, C., Freund, S. N., Lifshin, M., Qadeer, S., 8 2008. Types for Atomicity: Static Checking and2087

Inference for Java. ACM Trans. Program. Lang. Syst. 30 (4), 20:1–20:53.2088

Flanagan, C., Qadeer, S., Flanagan, C., Qadeer, S., 2003. A type and effect system for atomicity. In: Pro-2089

ceedings of the ACM SIGPLAN 2003 conference on Programming language design and implementation2090

- PLDI ’03. Vol. 38. ACM Press, pp. 338–349.2091

Floyd, R. W., 1967. Assigning meanings to programs. Proceedings of Symposium on Applied Mathematics2092

19, 19–32.2093

URL http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf2094

Garcia, R., Tanter, r., Wolff, R., Aldrich, J., 10 2014. Foundations of Typestate-Oriented Programming.2095

ACM Trans. Program. Lang. Syst. 36 (4), 12:1–12:44.2096

Gay, S. J., Gesbert, N., Ravara, A., Vasconcelos, V. T., 2015a. Modular session types for objects. Logical2097

Methods in Computer Science.2098

Gay, S. J., Gesbert, N., Ravara, A., Vasconcelos, V. T., 2015b. Modular session types for objects. Logical2099

Methods in Computer Science 11 (4).2100

URL https://doi.org/10.2168/LMCS-11(4:12)20152101

Gay, S. J., Vasconcelos, V. T., 2010. Linear type theory for asynchronous session types. Journal of Func-2102

tional Programming.2103

Gherghina, C., David, C., Qin, S., Chin, W.-N., 2011. Structured specifications for better verification of2104

heap-manipulating programs. In: FM 2011: Formal Methods. Springer Berlin Heidelberg, pp. 386–401.2105

Giannini, P., Richter, T., Servetto, M., Zucca, E., 2018a. Tracing sharing in an imperative pure calculus.2106

CoRR abs/1803.0.2107

Giannini, P., Servetto, M., Zucca, E., 2018b. A Type and Effect System for Uniqueness and Immutability.2108

In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing. SAC ’18. ACM, pp.2109

1038–1045.2110

Girard, J.-Y., 1987. Linear logic. Theoretical computer science 50 (1), 1–101.2111

Gordon, C. S., Parkinson, M. J., Parsons, J., Bromfield, A., Duffy, J., 2012. Uniqueness and reference2112

immutability for safe parallelism. In: Proceedings of the ACM international conference on Object2113

oriented programming systems languages and applications - OOPSLA ’12.2114

Gotsman, A., Berdine, J., Cook, B., Sagiv, M., 6 2007. Thread-modular Shape Analysis. SIGPLAN Not.2115

42 (6), 266–277.2116

Greenhouse, A., 2003. A Programmer-Oriented Approach to Safe Concurrency. Tech. rep.2117

URL http://reports-archive.adm.cs.cmu.edu/anon/2003/CMU-CS-03-135.pdf2118

Greenhouse, A., Scherlis, W. L., 2002. Assuring and evolving concurrent programs: annotations and2119

policy. In: Proceedings of the 24th International Conference on Software Engineering.2120

Haack, C., Huisman, M., Hurlin, C., 2008. Reasoning about java’s reentrant locks. In: Lecture Notes in2121

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in2122

Bioinformatics).2123

65

http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf
https://doi.org/10.2168/LMCS-11(4:12)2015
http://reports-archive.adm.cs.cmu.edu/anon/2003/CMU-CS-03-135.pdf

Haack, C., Hurlin, C., 2008. Separation Logic Contracts for a Java-Like Language with Fork/Join. In:2124

Algebraic Methodology and Software Technology. Springer Berlin Heidelberg, pp. 199–215.2125

Hammer, C., Dolby, J., Vaziri, M., Tip, F., 2008. Dynamic Detection of Atomic-Set-Serializability Viola-2126

tions. In: Proceedigns of the 30th International Conference on Software Engineering (ICSE’ 08).2127

Heule, S., Leino, K. R. M., Müller, P., Summers, A. J., 2011. Fractional permissions without the fractions.2128

In: Proceedings of the 13th Workshop on Formal Techniques for Java-Like Programs. ACM, p. 1.2129

Heule, S., Leino, K. R. M., Müller, P., Summers, A. J., 2013. Abstract read permissions: Fractional2130

permissions without the fractions. In: International Workshop on Verification, Model Checking, and2131

Abstract Interpretation. Springer, pp. 315–334.2132

Hoare, C. A. R., 1969. An axiomatic basis for computer programming. Communications of the ACM2133

12 (10), 576–580.2134

Hoare, C. A. R., 1972. Towards a Theory of Parallel Programming. In: The Origin of Concurrent Pro-2135

gramming. Springer New York, pp. 231–244.2136

Hoare, C. A. R., 1974. Monitors: an operating system structuring concept. Communications of the ACM.2137

Hobor, A., Appel, A. W., Nardelli, F. Z., 2008. Oracle semantics for concurrent separation logic. In:2138

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and2139

Lecture Notes in Bioinformatics).2140

Hobor, A., Gherghina, C., 2012. Barriers in concurrent separation logic: Now with tool support! Logical2141

Methods in Computer Science.2142

Honda, K., 1993. Types for dyadic interaction. Springer, Berlin, Heidelberg, pp. 509–523.2143

Honda, K., Vasconcelos, V. T., Kubo, M., 1998. Language Primitives and Type Discipline for Structured2144

Communication-Based Programming. In: Proceedings of the 7th European Symposium on Program-2145

ming: Programming Languages and Systems. ESOP ’98. Springer-Verlag, pp. 122–138.2146

Honda, K., Yoshida, N., Carbone, M., 2008. Multiparty Asynchronous Session Types. In: Proceedings2147

of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.2148

POPL ’08. ACM, pp. 273–284.2149

Hu, R., Kouzapas, D., Pernet, O., Yoshida, N., Honda, K., 2010. Type-safe eventful sessions in Java. In:2150

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and2151

Lecture Notes in Bioinformatics).2152

Hu, R., Yoshida, N., Honda, K., 2008. Session-based distributed programming in Java. In: Lecture Notes2153

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in2154

Bioinformatics).2155

Huisman, M., 2001. Reasoning about Java programs in higher order logic using PVS and Isabelle. PhD2156

Thesis. Ph.D. thesis, Computing Science Institute, University of Nijmegen.2157

Huisman, M., Mostowski, W., 2015. A symbolic approach to permission accounting for concurrent reason-2158

ing. In: Proceedings - IEEE 14th International Symposium on Parallel and Distributed Computing,2159

ISPDC 2015.2160

Hüttel, H., Lanese, I., Vasconcelos, V. T., Caires, L., Carbone, M., Denilou, P.-M., Mostrous, D., Padovani,2161

L., Ravara, A., Tuosto, E., Vieira, H. T., Zavattaro, G., 4 2016. Foundations of Session Types and2162

Behavioural Contracts. ACM Comput. Surv. 49 (1), 3:1–3:36.2163

66

Igarashi, A., Kobayashi, N., 2001. Resource usage analysis. In: POPL.2164

Igarashi, A., Kobayashi, N., 3 2005. Resource Usage Analysis. ACM Trans. Program. Lang. Syst. 27 (2),2165

264–313.2166

Jacobs, B., Leino, K., Piessens, F., Schulte, W., 2005. Safe concurrency for aggregate objects with in-2167

variants. In: Third IEEE International Conference on Software Engineering and Formal Methods2168

(SEFM’05). IEEE, pp. 137–146.2169

Jacobs, B., Piessens, F., 2011. Expressive modular fine-grained concurrency specification. In: Proceedings2170

of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.2171

POPL ’11. ACM, pp. 271–282.2172

Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F., 2011. VeriFast: A powerful,2173

sound, predictable, fast verifier for C and java. In: NASA Formal Methods Symposium. Springer, pp.2174

41–55.2175

Jacobs, B., Smans, J., Piessens, F., 11 2010. A Quick Tour of the VeriFast Program Verifier. Springer,2176

Berlin, Heidelberg, pp. 304–311.2177

URL http://link.springer.com/10.1007/978-3-642-17164-2_212178

Jensen, J. B., Birkedal, L., 2012. Fictional Separation Logic. In: Seidl, H. (Ed.), Programming Languages2179

and Systems. Springer Berlin Heidelberg, pp. 377–396.2180

Jones, C. B., 1983. Specification and Design of (Parallel) Programs. In: IFIP Congress.2181

Juhasz, U., Kassios, I. T., Müller, P., Novacek, M., Schwerhoff, M., Summers, A. J., 2014. Viper. Tech.2182

rep.2183

Kidd, N., Reps, T., Dolby, J., Vaziri, M., 2011. Finding concurrency-related bugs using random isolation.2184

International Journal on Software Tools for Technology Transfer.2185

Kim, T., Bierhoff, K., Aldrich, J., Kang, S., 2009. Typestate protocol specification in JML. In: Proceedings2186

of the 8th international workshop on Specification and verification of component-based systems. ACM,2187

pp. 11–18.2188

Kobayashi, N., Sangiorgi, D., 5 2010. A hybrid type system for lock-freedom of mobile processes. ACM2189

Transactions on Programming Languages and Systems 32 (5), 1–49.2190

Lai, Z., Cheung, S. C., Chan, W. K., 2010. Detecting atomic-set serializability violations in multithreaded2191

programs through active randomized testing. In: Proceedings of the 32nd ACM/IEEE International2192

Conference on Software Engineering - ICSE ’10.2193

Le, D.-K., Chin, W.-N., Teo, Y.-M., 2012. Variable Permissions for Concurrency Verification. In: Formal2194

Methods and Software Engineering: 14th International Conference on Formal Engineering Methods,2195

ICFEM 2012, Kyoto, Japan, November 12-16, 2012. Proceedings. Springer Berlin Heidelberg, pp. 5–21.2196

Leavens, G. T., Baker, A. L., Ruby, C., 2006. Preliminary design of JML: A behavioral interface specifi-2197

cation language for Java. ACM SIGSOFT Software Engineering Notes 31 (3), 1–38.2198

Leavens, G. T., Cheon, Y., 2006. Design by Contract with JML.2199

Leino, K. R. M., Müller, P., 2009. A basis for verifying multi-threaded programs. In: European Symposium2200

on Programming. Springer, pp. 378–393.2201

67

http://link.springer.com/10.1007/978-3-642-17164-2_21

Leino, K. R. M., Müller, P., Smans, J., 2009. Verification of Concurrent Programs with Chalice. In:2202

Foundations of Security Analysis and Design V: FOSAD 2007/2008/2009 Tutorial Lectures. Springer2203

Berlin Heidelberg, pp. 195–222.2204

Lu, S., Park, S., Seo, E., Zhou, Y., Lu, S., Park, S., Seo, E., Zhou, Y., Lu, S., Park, S., Seo, E., Zhou, Y.,2205

Lu, S., Park, S., Seo, E., Zhou, Y., 3 2008. Learning from mistakes. ACM SIGOPS Operating Systems2206

Review 42 (2), 329.2207

Marino, D., Hammer, C., Dolby, J., Vaziri, M., Tip, F., Vitek, J., 5 2013. Detecting deadlock in programs2208

with data-centric synchronization. In: 2013 35th International Conference on Software Engineering2209

(ICSE). pp. 322–331.2210

Matsakis, N. D., Klock, F. S., Matsakis, N. D., Klock II, F. S., 2014. The rust language. In: Proceedings2211

of the 2014 ACM SIGAda annual conference on High integrity language technology - HILT ’14. Vol. 34.2212

ACM Press, pp. 103–104.2213

Meyer, B., 1988. Object-Oriented Software Construction, 1st Edition. Prentice-Hall, Inc.2214

Meyer, B., 10 1992. Applying ’design by contract’. Computer 25 (10), 40–51.2215

Militao, F., Aldrich, J., Caires, L., 2010. Aliasing Control with View-based Typestate. In: Proceedings of2216

the 12th Workshop on Formal Techniques for Java-Like Programs. FTFJP ’10. ACM, pp. 7:1–7:7.2217

Militão, F., Aldrich, J., Caires, L., 2014a. Rely-Guarantee Protocols. In: ECOOP 2014 – Object-Oriented2218

Programming. Springer Berlin Heidelberg, pp. 334–359.2219

Militão, F., Aldrich, J., Caires, L., 2014b. Substructural Typestates. In: Proceedings of the ACM SIG-2220

PLAN 2014 Workshop on Programming Languages Meets Program Verification. PLPV ’14. ACM, pp.2221

15–26.2222

Militão, F., Aldrich, J., Caires, L., 2016. Composing interfering abstract: Protocols. In: 30th European2223

Conference on Object-Oriented Programming, ECOOP 2016. Vol. 56. pp. 161–1626.2224

Milito, F., Caires, L., 2009. An Exception Aware Behavioral Type System for Object-Oriented Programs.2225

In: INFORUM 2009 - Simpsio de Informtica. Faculdade de Cincias - Universidade de Lisboa, pp. 1–12.2226

Morrisett, G., Ahmed, A., Fluet, M., 2005. L3: A Linear Language with Locations. In: Typed Lambda2227

Calculi and Applications. Springer Berlin Heidelberg, pp. 293–307.2228

Müller, P., Rudich, A., 2007. Ownership transfer in universe types. In: Proceedings of the 22nd annual2229

ACM SIGPLAN conference on Object oriented programming systems and applications - OOPSLA ’07.2230

Müller, P., Schwerhoff, M., Summers, A. J., 2017. Viper: A verification infrastructure for permission-based2231

reasoning. In: Dependable Software Systems Engineering.2232

Naden, K., Bocchino, R., Aldrich, J., Bierhoff, K., 2012. A Type System for Borrowing Permissions. In:2233

Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming2234

Languages. POPL ’12. ACM, pp. 557–570.2235

Naik, M., Park, C. S., Sen, K., Gay, D., 2009. Effective static deadlock detection. In: Proceedings -2236

International Conference on Software Engineering.2237

Nguyen, H. H., Chin, W.-N., 2008. Enhancing program verification with lemmas. In: Proceedings of the2238

20th International Conference on Computer Aided Verification. CAV ’08. Springer-Verlag, pp. 355–369.2239

Nielson, F., Nielson, H. R., 1993. From CML to process algebras. Springer, Berlin, Heidelberg, pp. 493–508.2240

68

Nielson, F., Nielson, H. R., 1996. From CML to its process algebra. Theoretical Computer Science.2241

Noble, J., Vitek, J., Potter, J., 1998. Flexible alias protection. In: Lecture Notes in Computer Science2242

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).2243

Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., Mihaylov, N., Schinz, M.,2244

Stenman, E., Zenger, M., 2004. An overview of the Scala programming language. Tech. rep.2245

O’Hearn, P., Reynolds, J., Yang, H., 2001. Local Reasoning about Programs that Alter Data Structures.2246

In: Computer Science Logic. Springer Berlin Heidelberg, pp. 1–19.2247

OHearn, P. W., 4 2007. Resources, Concurrency, and Local Reasoning. Theor. Comput. Sci. 375 (1-3),2248

271–307.2249

Owicki, S., Gries, D., 5 1976. Verifying Properties of Parallel Programs: An Axiomatic Approach. Com-2250

mun. ACM 19 (5), 279–285.2251

Owre, S., Rushby, J. M., Shankar, N., 1992. PVS: a prototype verification system. 11th International2252

Conference on Automated Deduction.2253

Parkinson, M., Bierman, G., 2005. Separation logic and abstraction. ACM SIGPLAN Notices 40 (1),2254

247–258.2255

Paulino, H., Parreira, D., Delgado, N., Ravara, A., Matos, A., 2016. From Atomic Variables to Data-centric2256

Concurrency Control. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing.2257

SAC ’16. ACM, pp. 1806–1811.2258

Pradel, M., Jaspan, C., Aldrich, J., Gross, T. R., 2012. Statically checking API protocol conformance with2259

mined multi-object specifications. In: Proceedings - International Conference on Software Engineering.2260

Reynolds, J. C., 1978. Syntactic Control of Interference. In: Proceedings of the 5th ACM SIGACT-2261

SIGPLAN Symposium on Principles of Programming Languages. POPL ’78. ACM, pp. 39–46.2262

Reynolds, J. C., 2002. Separation logic: A logic for shared mutable data structures. In: Logic in Computer2263

Science, 2002. Proceedings. 17th Annual IEEE Symposium on. IEEE, pp. 55–74.2264

Rodŕıguez, E., Dwyer, M., Flanagan, C., Hatcliff, J., Leavens, G., Robby, 2005. Extending JML for Mod-2265

ular Specification and Verification of Multi-threaded Programs. In: ECOOP 2005 - Object-Oriented2266

Programming.2267

Roux, P., Siminiceanu, R., 2010. Model Checking with Edge-valued Decision Diagrams. In: Second2268

{NASA} Formal Methods Symposium - {NFM} 2010, Washington D.C., USA, April 13-15, 2010.2269

Proceedings. pp. 222–226.2270

Sadiq, A., Li, Y., Ling, S., Li, L., Ahmed, I., 2019. Sip4j: Statically inferring permission-based specifica-2271

tions for sequential java programs. CoRR abs/1902.05311.2272

URL http://arxiv.org/abs/1902.053112273

Sadiq, A., Li, Y.-F., Ling, S., Ahmed, I., 2016. Extracting Permission-Based Specifications from a Sequen-2274

tial Java Program. In: 21st International Conference on Engineering of Complex Computer Systems,2275

United Arab Emirates, November 6-8, 2016. pp. 215–218.2276

Sangiorgi, D., 1999. The name discipline of uniform receptiveness. Theoretical Computer Science.2277

Schwinghammer, J., Birkedal, L., Reus, B., Yang, H., 2011. Nested Hoare Triples and Frame Rules for2278

Higher-order Store. Logical Methods in Computer Science 7 (3).2279

69

http://arxiv.org/abs/1902.05311

Siek, J., Taha, W., 2007. Gradual typing for objects. In: Ernst, E. (Ed.), ECOOP 2007 – Object-Oriented2280

Programming. Springer Berlin Heidelberg, pp. 2–27.2281

Siminiceanu, R. I., Ahmed, I., Cataño, N., 2012. Automated Verification of Specifications with Typestates2282

and Access Permissions. ECEASST 53.2283

Smans, J., Jacobs, B., Piessens, F., 2009. Implicit Dynamic Frames: Combining Dynamic Frames and2284

Separation Logic. Springer, Berlin, Heidelberg, pp. 148–172.2285

Stork, S., Naden, K., Sunshine, J., Mohr, M., Fonseca, A., Marques, P., Aldrich, J., 2014. aem: A2286

Permission-Based Concurrent-by-Default Programming Language Approach. ACM Trans. Program.2287

Lang. Syst. 36 (1), 1–42.2288

Strom, R. E., Yemini, S., 1986. Typestate: A programming language concept for enhancing software2289

reliability. IEEE Transactions on Software Engineering (1), 157–171.2290

Sunshine, J., Naden, K., Stork, S., Aldrich, J., Tanter, r., 2011. First-class state change in plaid. ACM2291

SIGPLAN Notices.2292

Takeuchi, K., Honda, K., Kubo, M., 1994. An interaction-based language and its typing system. In: In2293

PARLE94, volume 817 of LNCS. pp. 398–413.2294

Vafeiadis, V., Parkinson, M., 2007. A Marriage of Rely/Guarantee and Separation Logic. In: Caires, L.,2295

Vasconcelos, V. T. (Eds.), CONCUR 2007 – Concurrency Theory. Springer Berlin Heidelberg, pp.2296

256–271.2297

Vaziri, M., Tip, F., Dolby, J., 2006. Associating Synchronization Constraints with Data in an Object-2298

oriented Language. In: Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Prin-2299

ciples of Programming Languages. POPL ’06. ACM, pp. 334–345.2300

Vaziri, M., Tip, F., Dolby, J., Hammer, C., Vitek, J., 2010. A Type System for Data-Centric Synchro-2301

nization. In: ECOOP 2010 – Object-Oriented Programming. Springer Berlin Heidelberg, pp. 304–328.2302

Villard, J., Lozes, É., Calcagno, C., 2009. Proving copyless message passing. In: Programming Languages2303

and Systems. Springer Berlin Heidelberg, pp. 194–209.2304

Villard, J., Lozes, t., Calcagno, C., 2010. Tracking Heaps That Hop with Heap-Hop. Springer, Berlin,2305

Heidelberg, pp. 275–279.2306

Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F., 2003. Model Checking Programs. Automated2307

Software Engineering 10 (2), 203–232.2308

Voung, J. W., Jhala, R., Lerner, S., 2007. RELAY. In: Proceedings of the the 6th joint meeting of the2309

European software engineering conference and the ACM SIGSOFT symposium on The foundations of2310

software engineering - ESEC-FSE ’07. ACM Press, p. 205.2311

Wadler, P., 2014. Propositions as sessions. In: Journal of Functional Programming.2312

Westbrook, E., Zhao, J., Budimli, Z., Sarkar, V., 2012. Practical Permissions for Race-free Parallelism. In:2313

Proceedings of the 26th European Conference on Object-Oriented Programming. ECOOP’12. Springer-2314

Verlag, pp. 614–639.2315

Xu, M., Bodk, R., Hill, M. D., Xu, M., Bodk, R., Hill, M. D., 6 2005. A serializability violation detector2316

for shared-memory server programs. ACM SIGPLAN Notices 40 (6), 1.2317

Zhao, Y., 2007. Concurrency analysis based on fractional permissions. Ph.D. thesis, University of2318

Wisconsin-Milwaukee.2319

70

Zhao, Y., Yu, L., Bei, J., 12 2008. The Permission Approach to Comprehend Lock-Based Synchronization2320

Policy. In: 2008 International Conference on Advanced Computer Theory and Engineering. IEEE, pp.2321

709–713.2322

71

Appendix A. Vitae2323

• Miss. Ayesha Sadiq is a final year PhD student in the Faculty of2324

Information Technology at Monash University. Her research interest2325

primarily lies in software engineering with a focus on programming2326

languages, program analysis and verifications and formal modelling of2327

real time applications.2328

2329

• Dr. Yuan-Fang Li is a Senior Lecturer at Faculty of Information2330

Technology, Monash University, Australia. He received his PhD in2331

computer science from National University of Singapore in 2006. His2332

research interests include knowledge graphs, knowledge representation2333

and reasoning, ontology languages, and software engineering.2334

2335

• Dr. Sea Ling works in the Faculty of Information Technology at2336

Monash University as a senior lecturer. His fundamental research in-2337

terest lies in software engineering techniques with specific focus on for-2338

mal methods and programming languages. Currently, his research is2339

on extending and applying these techniques to the areas of ubiquitous2340

and pervasive computing.2341

72

	Introduction
	Related Formalisms to Program Verification and Parallelization
	Access Permissions: An Overview
	Access Permission Contracts in the Spirit of Linear Logic and the Design by Contract Principle
	Access Permission Splitting and Joining Rules

	Permission-based Verification of API Protocols
	Verification of API protocols in Single-threaded Programs
	Verification of API Protocols in Multi-threaded Programs

	Verification of Race conditions and Deadlocks in Multi-threaded Programs
	Permission Sharing and Accounting Models
	Permission-based Verification Techniques and Tools

	Automatic Inference of Access Permissions
	Inference of Read & Write Accesses
	Inference of Fractional Permissions
	Inference of Symbolic Permissions

	An Insight into Research Challenges and Future Directions
	Vitae

