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Abstract

Data management has become a critical challenge faced by a wide array of
scientific disciplines in which the provision of sound data management is
pivotal to the achievements and impact of research projects. Massive and
rapidly expanding amounts of data combined with data models that evolve
over time contribute to making data management an increasingly challenging
task that warrants a new approach. In this paper we present an ontology-
centric architecture for data management systems that is extensible and do-
main independent. In this architecture, the behaviors of domain concepts
and objects are captured entirely by ontological entities, around which all
data management tasks are carried out. The open and semantic nature of
ontology languages also makes this architecture amenable to greater data
reuse and interoperability. To evaluate the proposed architecture, we have
applied it to the challenge of managing phenomics data.
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1. Introduction

Data management is the practice of managing (digital) data and re-
sources, encompassing a wide range of activities including acquisition, stor-
age, retrieval, discovery, access control, publication, integration, curation and
archival. For many data-intensive scientific disciplines such as life sciences
and bioinformatics, sound data management informs and enables research
and has become an indispensable component [2].

The need for effective data management is, in a large part, due to the
fact that massive amounts of digital data are being generated by modern
instruments. Furthermore, the fast evolution of technologies/processes and
the discovery of new scientific knowledge require flexibility in handling dy-
namic data and models in data management systems. Among others, there
are three core challenges for effective data management in scientific research.

• The ability to provide a data management service that can manage
large quantities of heterogeneous data in multiple formats (text, im-
age, and video) and not be constrained to a finite set of experimental,
imaging and measurement platforms or data formats.

• The ability to support metadata-related services to provide context
and structure for data within the data management service to facilitate
effective search, query and dissemination.

• The ability to accommodate evolving and emerging knowledge, tech-
nologies and processes.

Database systems have traditionally been used successfully to manage
research data [3] in which database schemas are used as domain models to
capture attributes and relationships of domain concepts. One implication
of the above approach is that domain models need to stay relatively stable
as database extension and migration is often an error-prone and laborious
task. Consequently, this approach is not suitable for domains where data
and model evolution is the norm rather than the exception.

Semantic Web ontology languages such as RDF Schema and OWL pos-
sess expressive, rigorously-defined semantics and non-ambiguous syntaxes.
Moreover, they have been designed to be open and extensible and to support
knowledge and data exchange on the Web [4, 5]. These intrinsic character-
istics make them an ideal conceptual platform on which a flexible scientific
data management system can be built.
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The ontology language OWL is being widely used as a modeling language
in a number of domains, notably in life sciences and biotechnology [6, 7, 8],
due to its expressivity and extensibility. There is also an increasing number
of tools to support tasks including reasoning, querying and visualization,
making it a viable option for the modeling and representation of scientific
domain concepts.

Moreover, with the rapid progression of Semantic Web-based data inte-
gration through the community-driven Linked Data project [9], it is advan-
tageous for data management systems to support Semantic Web languages
and standards natively to benefit from the rapidly expanding, integrated
open datasets.

In this paper, we present our work in designing PODD (Phenomics Ontol-
ogy Driven Data Management), an extensible, domain-agnostic architecture
for scientific data management that uses an ontology-centric approach. In
our architecture, we support data and model changes through ontology-based
domain modeling. Ontologies are at the core of the system - the behaviors of
abstract domain concepts and concrete domain objects are entirely defined
by ontological vocabularies. Logical structure of data is therefore maintained
and enforced via ontological definitions and reasoning and not via database
schemas and associated constraints.

The ontology-based domain model is at the core of PODD as it drives
the creation, storage, validation, query and search of data and metadata.
The object-oriented approach to developing layers of ontology models and
the versioning of ontological definitions make PODD highly extensible.

Based on the ontology-centric architecture, we have developed the PODD
repository [10] to meet the above challenges facing the Australian phenomics
research community. Our aim is to provide efficient and flexible data repos-
itory functionality for large-scale phenomics research data, and to provide a
mechanism for maintaining structured and precise metadata around the raw
data so that the combined data/metadata can be stored, distributed and
published in a reusable fashion.

We would like to emphasize that although the PODD system is geared
towards phenomics research, the ontology-centric architecture we propose in
this paper is domain-independent and can be applied in any scientific disci-
pline where research output can be conceptually organized in a structured
manner.

The rest of the paper is organized as follows. In Section 2 we present
related work and give a brief overview of the motivation and goals of the
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PODD project. Section 3 presents the ontology-based architecture for data
management systems. In Section 4, we discuss the PODD ontologies in more
detail and show how the ontology-based modeling approach is used in the life
cycle of repository concepts and objects. Ontology versioning and dynamic
composition is central to the support of co-evolution of knowledge and data,
and to the maintenance of knowledge and data consistency. The semantics
of these operations are formally defined in Section 5 using first-order logic
and set theory. In Section 6, we describe the implementation of the PODD
data management system and evaluation results to date. Finally, Section 7
concludes the paper and identifies future directions.

2. Related Work, Motivation & Goals

Over the years attempts have been made to develop content repository
systems and architectures to meet institutional and personal data manage-
ment needs. In this section, we introduce a number of such systems and
architectures. With this survey of related work, we present the motivation
behind the ontology-centric architecture and the goals we wish to achieve
with the PODD data management system.

2.1. Scientific Data and Resource Management Systems & Tools

Fedora Commons1 is an open-source digital resource management system
based on the principles of modularity, interoperability and extensibility. In
Fedora Commons, abstract concepts are defined as models, on which inter-
relationships and behaviors can be further defined. Data in Fedora Commons
repositories are represented as objects, which contain datastreams that store
either metadata or data. Fedora Commons makes heavy use of Semantic
Web technologies through the use of common RDF vocabularies and the
integration with the Mulgara triple store2, which can be used for metadata
storage and queried using SPARQL3.

Apache Jackrabbit4 is an open-source implementation of the Content
Repository for Java Technology (JCR) API5. In JCR, data is stored in a

1http://www.fedora-commons.org/
2http://www.mulgara.org/
3http://www.w3.org/TR/rdf-sparql-query/
4http://jackrabbit.apache.org/
5http://jcp.org/en/jsr/detail?id=283
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tree of nodes, which can hold properties of arbitrary values, which is concep-
tually similar to Fedora Commons. Types can be defined on nodes to place
certain restrictions on them.

Fedora Commons and JCR both support fairly basic mechanisms for
defining object relationships. Hence, they are usually used as the under-
lying repository solution on which complex data and document management
systems are built. These systems include the National Science Digital Library
(NSDL)6, PLoS ONE7, Biodiversity Heritage Library8 and Fez9, among oth-
ers. In contrast to our ontology-centric approach, these systems are reliant
upon database schemas as their domain models.

Bioinformatics Resource Manager (BRM) [3] is one example of client-
server style data management software for bioinformatics research. The
client software is installed on users’ computers to access (microarray and pro-
teomic) resources stored on BRM server in a PostgreSQL relational database.
The BRM server supports data acquisition from external sources such as
NCBI [11] and UniProt [12]. It also supports annotation using public datasets
and connectivity to analytics tools. Data in BRM is stored under the Project
concept and is mostly flat, i.e., it does not support hierarchical domain con-
cepts such as investigation and publication.

ArrayExpress [13] is a public database of microarray gene expression data.
Its three components, the Repository, the Warehouse and the Atlas, con-
tains a large amount of data about functional genomics experiments, gene
expression profiles and summaries and analytical tools for gene expressions
across experiments and biological conditions. ArrayExpress is built on top
of a number of relational databases. Recently, an Experimental Factor On-
tology (EFO), a controlled vocabulary of diseases, multi-species anatomy,
compounds and cell-type terms has been developed to support the annota-
tion of data in ArrayExpress. The EFO ontology contains mapping to other
ontologies including the Disease Ontology10, the NCI Thesaurus11 and the
Cell Type ontology12.

6http://nsdl.org/
7http://www.plosone.org/
8http://www.biodiversitylibrary.org/
9http://fez.library.uq.edu.au/

10http://diseaseontology.sourceforge.net/
11http://ncit.nci.nih.gov/
12http://lists.sourceforge.net/lists/listinfo/obo-cell-type
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Besides data management systems, grid-based middleware systems have
also been developed to provide distributed storage solutions. Such systems in-
clude the Storage Resource Broker (SRB) [14] and the CERN Data Grid [15]
and other systems that make use of Globus13 middleware. These systems
store data in a distributed environment and usually support authentication,
replication, redundancy, etc. However, they are primarily concerned with
data storage and replication and hence do not provide full-fledged data man-
agement capabilities. Interested readers are referred to [16] for a detailed
survey of grid resource management systems. Semantic Grid14 is an exten-
sion of Grid technology in which rich metadata is made available to and
managed explicitly by applications in the grid. A reference architecture for
semantic grid, S-OGSA [17], has been proposed that defines a model and
capabilities and mechanisms for the Semantic Grid.

More recently, ontology-based approaches have been taken in VIVO [18]
to model, organize and integrate research activities and researcher profiles in
an institutional setting. DOKMS [19] is a distributed, ontology-based knowl-
edge management framework that serves similar purposes as VIVO. DOKMS
operates in a P2P environment with desktop clients instead of browsed-based
as in VIVO.

2.2. Domain Modeling in Scientific Research

A number of specifications and ontologies have been proposed to model
scientific research activities. In 2004, the Council for the Central Laboratory
of the Research Councils (CCLRC) of UK developed a CCLRC Scientific
Metadata Model [20] that models data holdings in scientific activities in free
text. Similar to what we propose here, the CCLCR Scientific Metadata
Model logically organises data into objects, whose definitions are supplied by
UML diagrams. The emphasis of this model is on cataloging data, but not
integrating data. Compared to this model, our architecture is based on a lan-
guage with formal semantics. Our architecture also focuses on extensibility
and domain independence.

An OWL ontology, EXPO, was developed [21] to capture metadata about
scientific experiments. EXPO was developed in a top-down manner by ex-
tending concepts in the Suggested Upper Merged Ontology (SUMO)15. Al-

13http://www.globus.org/
14http://www.semanticgrid.org/
15http://www.ontologyportal.org/
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though very comprehensive, these models are quite verbose and consequently
are not very suitable as models for developing data management systems.

For a scientific data management system to be effective, models of do-
main concepts need to be integrated with models of scientific activities and
workflows. In biological and particularly ’omics research, a large number of
databases have been developed to host a variety of information such as genes
(Ensembl16), proteins (UniProt17), publications (PubMed18) and microarray
(GEO19). These databases are generally characterized by the fact that they
specialize in a particular kind of data (protein sequences, publications, etc.)
and that their conceptual domain models, such as genes [8] and microarray
experiments [22], are well understood. However, models of biological and
clinical investigations are less well understood.

The Ontology for Biomedical Investigations (OBI)20 is an ongoing effort
aimed at developing an integrative ontology for biological and clinical inves-
tigations. It takes a top-down approach by reusing high-level, abstract con-
cepts from other ontologies. OBI includes 2,600+ OWL classes and 10,000+
axioms (in the import closure of the OBI ontology). Although OBI is very
comprehensive, its size and complexity makes reasoning and querying of
OBI-based ontologies and RDF graphs computationally expensive and time
consuming, making it impractical as a domain model for data management
systems where such reasoning may need to be performed repeatedly.

The Functional Genomics Experiment Model (FuGe) [23] is an extensible
modeling framework for high-throughput functional genomics experiments,
aimed at improving the consistency and efficiency of experimental data mod-
eling for the molecular biology research community. Centered around the
concept of experiments, it encompasses domain concepts such as Protocol,
Sample and Data. FuGe is developed using UML from which XML Schemas
and database definitions are derived. The FuGe model not only covers con-
cepts specific to scientific research such as Analysis, Sequence and Investiga-
tion; it also defines commonly used concepts such as Audit, Reference and
Measurement. Extensions in FuGe are defined through inheritance of UML
classes.

16http://www.ensembl.org/
17http://www.uniprot.org/
18http://www.ncbi.nlm.nih.gov/pubmed/
19http://www.ncbi.nlm.nih.gov/geo/
20http://purl.obolibrary.org/obo/obi
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FuGe provides extension points to support the addition of technology-
specific data formats [24]. The Audit package in FuGe provides experimental
versioning support to track changes to data objects. However, it has not yet
been defined how models can be versioned [24].

Observations and Measurements is an International Standardization ef-
fort (ISO/PRF 19156)21 under development that defines a conceptual model
and encoding for observations and measurements for geographic information
systems (GIS). This standard, is a core part of the Open Geospatial Consor-
tium (OGC) Sensor Web Enablement that aims at providing annotations for
sensor data. A core component of this standard is the Observation Schema,
which defines a set of core features for an observation, including feature of
interest, observed property, observation procedure and result. This schema
takes a user-centric point of view, emphasizing on the meaning of the ob-
servation. An XML Schema22 and an OWL implementation23 have been
developed to formally define this schema.

2.3. The Phenomics Domain as a Motivation for PODD

Phenomics is a fast-growing, data-intensive discipline in biology with new
technologies and processes rapidly emerging and evolving. As a result, its
domain model and data management systems must also be able to evolve to
handle the complexity, dynamics and scale of the data.

In phenomics, data is captured by both high- and low-throughput pheno-
typing devices. The scale of measurement can be from the micro or cellular
level, through the level of a single organism, and up to the macro or field
level. Imaging, measurement and analysis of organisms on such a large scale
produces an enormous amount of data.

In plant phenomics, the objective is to capitalise on emergent technolo-
gies to comprehensively measure and study the phenotypes that arise from
the plant’s genome combined with its development stage, environment and
disease factors. New imaging technologies deployed at the High Resolution
Plant Phenomics Centre (HRPPC), a node of the Australian Plant Phe-
nomics Facility (APPF), allow for comprehensive imaging and analysis of
plant morphology and function. Through visual imaging plant characteris-
tics such as leaf area, biomass, structure and damage can be identified and

21http://www.iso.org/iso/catalogue_detail.htm?csnumber=32574
22http://schemas.opengis.net/om/2.0/
23https://www.seegrid.csiro.au/subversion/xmml/ontologies/Ogc/
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measured. Far infrared imaging allows profiles of leaf temperature and wa-
ter usage to be obtained. Near infrared imaging can measure actual water
content in plant tissue and soil substrates. FTIR and hyperspectral imaging
determine the presence and distribution of chemical compounds at the cel-
lular level. When combined, these platforms can build up a comprehensive
digital profile of a plants phenome, especially when recorded over multiple
time points or developmental stages.

At the HRPPC many plant lines with distinct genotypes can be analyzed
in this way to determine their phenotypes. Information on the environmental
conditions and treatments of the plant lines are also recorded and available
as subsequent metadata and data to support the primary phenotyping data
and analysis. This includes data from controlled environment plant growth
rooms and cabinets, sensor data from field trials and automated watering
and treatment regimes.

These comprehensive data stacks for a single plant line are then rep-
resented in PODD as a combination of metadata and data streams. The
PODD domain model describes the data generation platforms (platform),
the plant genotypes (genotype), the individual plants that are phenotyped
(material), their growth environments (environment) and their treatment
regimes (treatment material and treatment). PODD then provides the con-
cept of data objects (data) to wrap data file collections generated by the
platforms and to associate with the plant materials. Finally PODD provides
analysis objects (analysis) for encapsulating secondary data derived from the
analysis of the primary data files.

Similarly, mouse phenomics research makes use of a large variety of imag-
ing and measurement platforms. The Australian Phenomics Network (APN)
utilises PODD for the management of primary phenotyping data and meta-
data. For example, in mouse histopathology and organ pathology based
research, the digital slide scanners are used to scan microscope slides, pro-
ducing high resolution images of stained organ cross-sections. In clinical
pathology, a flow cytometer uses laser diffraction to identify and quantify
cell types in mouse blood samples and analyse cell types that are the conse-
quence of an ENU mutation. For each of these platforms metadata on the
mutagenized mouse lines are recorded in PODD along with visual recordings
of the individual mouse specimens, and summary pathology reports.

In both plant and mouse phenomics the scientific workflows are also in-
corporated into the ontology as process and protocol objects, allowing re-
searchers accessing the online materials to understand the experimental pro-
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cesses that have been used to derive the phenotypes described.
Because an organism’s phenotype is often the product of the organism’s

genetic makeup, its development stage, disease conditions and its environ-
ment, any measurement made against an organism needs to be recorded in
the context of these other metadata. Consequently the opportunity exists to
create a repository to record the data, the contextual data (metadata) and
data classifiers in the form of ontological or structured vocabulary terms.
The structured nature of this repository will support both manual and au-
tonomous data discovery as well as provide the infrastructure for data based
collaborations with domestic and international research institutions. Cur-
rently there are no such integrated systems available. The goals of PODD
are to capture, manage, annotate and distribute the data generated by mouse
and plant phenomics research activities.

3. The Architecture of the Ontology-centric Data Management
System

3.1. Requirements of Data Management Systems

For any scientific data management system, a number of requirements
need to be satisfied.

Data storage and management Research activities in data-intensive dis-
ciplines such as ’omics often generate huge amounts of data. The abil-
ity to efficiently acquire, store and manage large volumes of data is
essential.

Data contextualization Sufficient contextual information needs to be main-
tained for more effective organization, understanding and discovery of
raw data. Contextual information includes both conceptual domain
models, such as how research activities are organized and carried out;
and metadata such as provenance information.

Data security There are many dimensions to data security, including ac-
cess control and archival. An effective data management system needs
to ensure data security through the use of authentication and autho-
rization and sound versioning and backup solutions.

Data identification and longevity In order to support the dissemination
of scientific findings, data in the repository needs to be publicly acces-
sible after being published. Hence, a persistent and unique naming
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scheme is required. Moreover, valuable scientific data also need to be
stored in perpetuity.

Data reuse and integration Contextual information helps to make sense
of raw data. Moreover, it also needs to be made discoverable, through
mechanisms such as full-text search, faceted browsing and complex
query answering, to allow raw data to be integrated and reused.

Model extensibility A data management system may need to manage a
wide variety of data, which may be generated by different software and
captured by different platforms. An expressive and extensible domain
model is therefore essential to cater for modification, addition and dele-
tion of domain concepts. The data management system also needs to
be designed to minimize service disruption when such a model change
occurs.

3.2. The Ontology-centric Architecture For Data Management Systems

With the data management requirements identified, we design an ontology-
centric architecture that satisfies these requirements effectively and efficiently.
The most distinguishing characteristic of this architecture is the central role
that ontologies play. In our architecture, raw data is not stored in a flat
structure but is attached to domain objects organized in a logical, hierar-
chical system, defined according to the domain model that represents the
structure of research activities.

Current document management systems such as Fez typically define a
relatively static domain model and hardwire it as relational schemas and
foreign key constraints in a custom relational database independent from the
underlying repository system. Consequently, the information pertinent to
each concrete object is stored in this custom database as well. As stated in the
previous section, we find this approach less flexible for dynamic environments
where conceptual changes are common.

To effectively support a dynamic conceptual framework, the domain model
in the proposed architecture is defined using OWL ontologies, in which: OWL
classes represent domain concepts; OWL properties define concept attributes
and their relationships; OWL restrictions specify constraints on concepts; and
finally, OWL individuals define concrete domain objects where attributes and
relationships are defined using OWL assertions. Raw data files are attached
to concrete domain objects.
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Such a conceptual architecture alleviates the problem of imposing hard
relational constraints in a database which is difficult to extend/change.

It is worth noting that referential integrity is not sacrificed in achieving
flexibility: ontological reasoning involving relevant concepts and objects is
performed before object modification to ensure that all constraints are sat-
isfied.

Compared to existing relational data management frameworks, concept
changes are naturally supported in our ontology-centric architecture. In our
proposed architecture, concepts (schema) and objects (data) are organic en-
tities and their definitions can evolve independently over time. Changes to
concept and object definitions are versioned to maintain a complete history.
As a result, existing instance objects can remain legitimate when integrity
validation is performed as they can still refer to the version of conceptual
definition. Details of such operations will be discussed in Section 5.

Business Logic Layer

Object 
Management

Concept 
management

Reasoning 
Service

Security Layer

Interface Layer

Object 
Services

Metadata 
Services

Publishing 
Services

Search & 
Query

Data Access Layer

Repository RDF Triple 
Store

Database

users, roles

Search 
Index

Figure 1: A high-level view of the ontology-centric architecture.

The high-level design of ontology-centric architecture takes a modular and
layered approach, as can be seen in Figure 1. At the foundation is the data
access layer, consisting of an underlying repository system, an RDF triple
store, a relational database that stores system and user-related information
and a full-text search engine. This layer is responsible for low-level tasks
supporting the creation, modification and deletion of concepts and objects.
The business logic layer in the middle is responsible for managing concepts
and objects, such as versioning, object composition and integrity validation.
These operations will be further discussed in Section 3.3. The security layer
controls access (authentication and authorization) to concepts and objects
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and guards all operations on them.
In this architecture, authorization is based on users’ access-related at-

tributes, which have two dimensions. Firstly, each user has a system-wide
role, such as registered user or system administrator, which is used to de-
termine access rights across the system. Secondly, a project-wide role, such
as project administrator and project observer, can be assigned so a user can
have project-specific access rights. At the top of the stack is the interface
layer, where the data management system can be accessed using a number
of interfaces such as a Web browser or API calls.

In developing the ontology-centric architecture, the following design deci-
sions have been made to balance expressivity, flexibility and conceptual clar-
ity. These decisions have been based on a survey of user requirements from
scientists within a range of research organizations including the Australian
Plant Phenomics Facility (APPF) as well as the Australian Phenomics Net-
work (APN), working on collaborative research projects that involve large
scale data and distributed teams.

• There is a top-level domain concept, called Project24, under which other
concepts (such as Investigation and Material) reside in a hierarchical
manner.

• Access control (authorization) is defined on the Project level rather
than on an individual object level, i.e., a given user will have the same
access rights for all objects within a given project.

• Within a Project hierarchy, objects are in a parent-child relationship
in a tree structure such that each child can only have one parent. This
ensures that access rights are properly propagated from parent to child
and there is no chance of confusion.

• Additionally, inter-object, many-to-many reference relationships can
be defined to enhance flexibility of the architecture as it allows cross
referencing between objects to be established.

• Objects cannot be shared across Projects. Instead, objects must be
copied from one project and pasted into another one. Such a rule

24The choice of concept names in the domain ontology is actually irrelevant to the
proposed architecture - names such as Project and others are chosen as they are general
and representative for a large number of scientific disciplines.
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simplifies object management with the elimination of possible side-
effects caused by sharing object between projects.

• There cannot be interference between different versions of a given con-
cept and between objects that are instances of different concept ver-
sions.

3.3. Ontology-centric Operations

Versioning, dynamic composition of domain concepts and objects, and
ontological reasoning are important operations in the business logic layer in
Figure 1. Applied together, these techniques contribute to making this ar-
chitecture extensible. In this subsection, we describe how these operations
are performed on domain concepts and objects (we refer to them as enti-
ties thereafter). The semantics of these operations are further described in
Section 5.

Versioning. As stated previously, all entities are semantically described
using ontologies. Each entity (concept and object) maintains a sequence of
versions of ontologies, from the earliest to the latest, as its semantic defini-
tion. Each version contains a unique timestamp and an ontology. A version
is created whenever the entity is updated. These versioned ontologies provide
a complete change history for each and every entity. Domain entities refer
to each other in their definitions, hence the cross references between versions
of ontologies from different entities are also maintained.

Versioning information is maintained in ontologies with the use of OWL
annotation properties poddModel:versionInfo and poddModel:mapsToVersion.
poddModel:versionInfo annotates an ontology with its own timestamp.
poddModel:mapsToVersion annotates the cross references between OWL
classes and individuals with the timestamp of the target of the cross reference.
Semantics of these annotation properties are further defined in Section 5.2.

Ontological reasoning. Before entities can be ingested or updated,
their definitions need to be checked to ensure semantic integrity. As ontolo-
gies serve as entity definitions, ontological reasoning is performed for integrity
checking. Different aspects of integrity are verified, including type correct-
ness and cardinality of entity attributes and associations between entities.

In our architecture, as described in the previous subsection, a domain
concept is represented as an OWL class, and a domain object is represented
as an OWL individual. Hence, the problem of integrity checking of the con-
cept/object reduces to the verification of consistency of the corresponding
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OWL class/individual. Such verification tasks are performed by OWL rea-
soners automatically.

Verification of OWL classes/individuals cannot be performed in isola-
tion as they refer to each other in their definitions. All relevant ontological
definitions need to be brought together to form transient ontologies. The
consistency of such ontologies is verified before the consistency of the OWL
class/individual is verified. This is because an inconsistent ontology makes
any inference logically invalid.

Dynamic composition. Transient ontologies are formed by dynami-
cally composing OWL classes and objects in runtime. Dynamic composition
is performed in the following scenarios.

• Before a new object is created, concept ontologies are composed to
generate a template to drive the rendering of the user input page in
HTML. In this case, the latest versions of ontologies of all involved
concepts are used for the composition.

• Similarly, before a new object/concept is saved, the latest versions of
relevant concept/object ontologies are composed to verify the consis-
tency of user inputs. The concept may reference other concepts, the
corresponding versions (which may not be the latest) of other concepts’
ontologies are used in the composition. Effectively, the closure of con-
cept ontologies are obtained in the composition.

• When an existing object is updated, the updated OWL individual on-
tology is checked against the latest version of the corresponding con-
cept. For other cross referenced objects, the corresponding versions of
their ontologies are used in the composition.

From the above discussion it can be seen that reasoning and composition
are applied together to maintain entity consistency, and that reasoning tasks
are performed on different levels. We refer to these levels as localities in
Section 5.3. Initial concept definitions are extracted from base and domain
ontologies (described in the next Section). This bootstrapping process is
further described in Section 5.4.

The interactions among these operations are illustrated in the example in
Figure 2 below. As can be seen here, each of the concepts C , D and objects
G , H and K has a sequence of versions of ontologies (Oi ’s, Pj ’s, Qk ’s, etc.)
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and each of these ontologies has a corresponding timestamp (ti ’s, uj ’s and
vk ’s).

Concepts can refer to particular versions of each other’s ontologies, as
illustrated in Figure 2 between concepts C and D . Each version of the
ontology of an object maps to the corresponding version of the ontology in
its concept’s definition. For example, ontology version v2 of object G refers to
version u2 in its defining concept C . Ontology version t1 in object H refers to
version u1 in the same concept. Hence, they can evolve independently without
interference. Similarly, objects can refer to each other’s ontologies as well,
and the versions of such cross references are maintained as well. Different
versions of ontologies of object K refer to different versions of ontologies of
objects G and H , respectively.

Object H

t0 P0

t1 P1

t2 P2

t3 P3

Concept C

u0 O0

u1 O1

u2 O2

u3 O3

u4 O4

Object G

v0 Q0

v1 Q1

v2 Q2

v3 Q3

Timestamps
Ontologies

mapsTo

mapsTo

Object K

.. ..

.. ..

.. ..

.. ..

Concept D

.. ..

.. ..

.. ..

.. ..

Figure 2: A graphical representation of ontology versions and their relationship.

The above three operations are essential to making the proposed architec-
ture extensible and domain-independent. The semantics of these operations
are further specified in Section 5.
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4. Ontology-based Domain Modeling

Domain concepts and objects are described using ontological terms. These
terms are defined in the base and domain-specific ontologies that will be de-
scribed in this section. The bootstrapping of concepts using these system
ontologies will be further described in Section 5.4.

As we emphasized previously, the domain model should be flexible enough
to accommodate the rapid changes and the dynamic nature of scientific re-
search. In the following subsection, we present the base ontology that we
have implemented that defines general vocabularies that are common to many
data-intensive disciplines. In Section 4.2, we present how the base ontology
is extended to support phenomics research.

In our modeling approach, we define ontologies on multiple levels. On
the base level, the ontology defines domain-independent concepts and their
inter-relationships with each other. Based on this base ontology, other more
domain-specific ontologies can be developed hierarchically.

4.1. The Base Domain Ontology

Inspired by FuGe and OBI, we create the base domain ontology in OWL
to define essential concepts in scientific investigations, their attributes and
inter-relationships in an object-oriented fashion. As stated in the previ-
ous section, concepts are modeled as OWL classes; relationships between
concepts and object attributes are modeled as OWL object- and datatype-
property assertions. Concrete objects are modeled as OWL individuals.

We define the following design principles for the base ontology.

• All essential concepts are modeled as subclasses of an abstract top-
level OWL class PODDConcept that captures common attributes and
relationships.

• All relationships between concepts are captured by domain proper-
ties, which can be further divided into two property hierarchies, one
for parent-child relationships and the other for reference relationships.
Each of the two hierarchies have an abstract top-level property, called
contains and refersTo, respectively.

• All parent-child relationships are modeled in a property hierarchy as
sub-properties of the abstract property contains, and all reference rela-
tionships are modeled in another property hierarchy as sub-properties
of the abstract property refersTo.

17



• For each domain concept C , one property is defined in each of the
above hierarchies with its range defined to be C . The domains of such
properties are not specified so that they can be used by any applicable
domain concept to establish a relationship between them.

• Class attributes are modeled using OWL restrictions.

• Essential domain concepts can be sub-classed to provide more special-
ized and refined information.

• To ensure that each object can have at most one parent object, the
inverse property of contains, isContainedBy, is defined so that a max
cardinality restriction can be added to the top-level concept PODD-
Concept to enforce it.

• We use annotation properties on OWL class definitions and axioms
to describe their non-semantic properties. For example, for each OWL
subclass axiom, we assign a weight annotation property value to suggest
their relative placement in the browser.

For an overview, inter-relationships of some of the concepts in the base
ontology are shown in Figure 3. For brevity reasons, only parent-child rela-
tionships are shown here. The OWL object properties and cross references
between classes are not shown.

Project

Analysis Investigation

AnalysisContainer Data Design Environment

Observation Treatment

Material
Treatment 
Material

Platform Process Project Plan Publication Protoocol

Figure 3: A top-level view of the parent-child relationships between essential concepts.

Some definitions of the top-level constructs are summarized in Figure 4
in OWL DL syntax.
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On the left-hand side we define the OWL class PODDConcept , which
is the super class of all the domain concepts in our ontologies. It also de-
fines the property contains and its inverse isContainedBy . The expression
≤ 1 isContainedBy ensures that each instance of PODDConcept can only be
contained by at most one other object, hence maintaining the single-parent
structure in the contains hierarchy.

On the right-hand side we define the concept Project to be a subclass
of the conjunction of 4 anonymous class expressions, stating that project
must have exactly one project plan, at least one investigation, exactly one
start date, and at most one publication date (a project may not have been
published).

PODDConcept v >
> v ∀ contains.PODDConcept

isContainedBy v (−contains)

PODDConcept v≤ 1 isContainedBy

Project v= 1 hasProjectPlan u
≥ 1 hasInvestigation u
v= 1 hasStartDate u
v≤ 1 hasPublicationDate

Figure 4: Top-level ontology constructs in the base ontology.

4.2. Domain-specific Ontologies
To describe domain knowledge in phenomics, we extend the base ontology

and develop a phenomics ontology by defining additional concepts including
Genotype, Gene, Phenotype and Sequence as subclasses of PODDConcept.
Additional OWL object- and datatype-properties are also defined to model
the attributes and relationships of these concepts, as shown in Figure 5. Note
that Phenotype is a subclass of Observation. To cater for different domains
in phenomics, we can further specialize the phenomics ontology to one for
the plant domain and one for the mouse domain.

Some important new OWL classes can be seen in Figure 6. Note that in
the phenomics ontology we reuse definitions (e.g., Observation) from the base
ontology to define new concepts. We also refine definitions (e.g., Project and
Material) in the base ontology with additional restrictions in the phenomics
ontology.

4.3. Roles of Domain Ontologies in Object Life Cycle
The base ontology defines essential concepts in a domain-independent

fashion. Domain-specific knowledge can be incorporated by extending the
base ontology for discipline-specific systems.
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Project

Genotype

Gene

Sequence

Analysis Investigation

AnalysisContainer Data Design Environment Material

Observation/
Phenotype

Treatment

Treatment 
Material

Platform Process Project Plan Publication Protocol

Figure 5: Essential classes in the domain-specific ontology for phenomics.

Genotype v PODDConcept

v ∀ hasGene.Gene

v≤ 1 hasEcotype

v≤ 1 hasSubspecies

Phenotype v Observation

Project v ∀ hasGenotype.Genotype

Material v ∀ hasPhenotype.Phenotype u
∀ refersToGenotype.Genotype

Figure 6: Domain-specific OWL definitions.

As stated in Section 1, the ontology-based domain model is at the center
of the whole life cycle of objects. In this subsection, we briefly describe the
roles that the domain ontologies perform at various stages of the object life
cycle.

Ingestion When an object is created, its definition is expressed in onto-
logical terms. Such definitions will be used to (a) guide the rendering
of object creation interfaces and (b) validate the attributes and inter-
object relationships the user has entered before the object is ingested.
When an object is ingested, its definitions are stored as RDF assertions.

Retrieval & update When an object is retrieved from the repository, its
attributes and inter-object relationships are retrieved from its RDF
assertions, which are used to drive on-screen rendering. When any
value is updated, it is validated and updated in this object’s RDF
assertions.

Query & search An object’s assertions will be stored in an RDF triple
store, which can be queried using the SPARQL query language. Sim-
ilarly, RDF assertions are indexed to provide functionalities such as
full-text search and faceted browsing.
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Publication & export When an object is published or exported, its meta-
data, in RDF, will be retrieved and exported.

4.4. Vocabulary Reuse

Ontologies in the Semantic Web are designed to be shared, reusable and
reused. A large number of ontologies and associated concrete RDF data have
been developed in the Linked Data project [9]. Hence, it is beneficial, and
advisable to reuse vocabularies whenever possible.

In our architecture, external vocabularies are used as annotations on
concepts and objects while local ontologies define their basic semantics. Such
an approach maintains semantic integrity of the domain while maximizing
knowledge reuse and integration.

5. Knowledge & Data Co-evolution: Dynamic Ontology Composi-
tion & Versioning

As stated previously, high extensibility is an important design goal for
our ontology-centric architecture. A prerequisite to this goal is that the
knowledge and the data described by the knowledge are able to evolve inde-
pendently. Moreover, to ensure consistency, it is also necessary to perform
integrity consistency checks on certain operations that modify the state of
the system, knowledge or data.

The architecture proposed here achieves these two goals through the com-
bination of concepts and objects versioning and dynamic composition. In this
section, we formally define their definitions and show how we employ them
in a declarative fashion.

As can be seen in Figures 3 - 6, the semantics of the domain is described
by a number of concepts. Concrete objects, defined by the concepts, repre-
sent real-world metadata entities that encapsulate raw data. The attributes
and relationships between concepts and objects are entirely defined by on-
tologies25. The versioning, reasoning and composition operations are defined
over these ontologies. In Section 3.3 we introduced these operations. In this
section, we give formal definitions and present their semantics.

25Note that the interpretation of ontology in this section is slightly relaxed to include
both OWL and RDF definitions.
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5.1. Notations

Here we define the notations that will be used in the rest of this section.

• Concepts and objects: A, B , C ,

• The ontology datatype: O, and individual ontologies: O , P , Q , and

• The time datatype: T, and individual timestamps: t1, t2, t3.

5.2. Ontology Versioning

A concept (or object) is defined by a sequence of ontologies, ordered by
their creation timestamps. Initially the sequence contains only one item, the
initial ontology definition for the concept (or object).

Formally, for any given concept C , we define its definition OC as a non-
empty partial function from time T to ontologies O.

OC : T 7→ O, where #OC 6= 0 (1)

In the above definition, the expression #OC denotes the cardinality of
the function OC . The condition that the cardinality is not 0 ensures that C ’s
definition is non-empty. By this definition, OC , the definition of C , is a set
of pairs (time, ontology): {(t1,O1), (t2,O2), . . . , (tn ,On)}, such that ti ’s are
unique from each other. Hence, this definition implicitly defines a temporal
sequence of ontologies.

Whenever a concept definition is updated, a new ontology is created
and added as the latest version to the sequence OC . For example, assum-
ing that the current sequence is {(t1,O1), (t2,O2), . . . , (tn ,On)}, a modifica-
tion will add a new ontology On+1 to the sequence, which then becomes
{(t1,O1), (t2,O2), . . . , (tn ,On), (tn+1,On+1}, and that ti+1 > ti ,∀ 1 ≤ i ≤ n.

In OWL and RDF, we support such a versioning mechanism through
OWL annotation properties. Each version of a concept and object ontology is
annotated with a builtin OWL annotation property owl:versionInfo, with
the annotation value being the creation time of the ontology. Additionally,
each version of an object ontology is also annotated with an annotation
property poddModel:mapsToVersion. The value of this annotation is the
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timestamp of the version of the ontology of the concept that defines this
object. We can view these two annotation properties as functions26:

versionInfoC : O 7→ T • versionInfoC = (OC )∼ (2)

mapsToVersionC : T 7→ T (3)

In Definition (2), we define versionInfo as a function from ontologies
O to time T. It is easy to see that it is the inverse function of O defined in
Definition (1).

Definition (3) defines mapsToVersion as a function from time T to time
T. As stated above, for a given object A and a given version of A’s ontology
OA, the version of the ontology of the corresponding concept C , OC , that
defines OA can be obtained by applying the above three functions:

OC = OC (mapsToVersionA(versionInfoA(OA))) (4)

With the above versioning mechanism defined, we impose the following
additional conditions to ensure that concepts and objects can evolve inde-
pendently.

• For any given concept or object, a modification results in a new version
of the ontology.

• For objects, each new version of the ontology maps (mapsToVersion)
to the latest version of ontology of its defining concept.

• For each concept C1, if it references another concept C2 during mod-
ification of its definition, the latest version of the ontology in C2 is
used.

5.2.1. Auxiliary Functions

We also define two auxiliary functions latest and earlierThan27:

26For readability reasons we omit namespace names for the annotation properties in the
following discussions.

27The symbol P in the definitions that follow represents power set.
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latest : P(T×O)→ O where ∀ x ∈ P(T×O); O ∈ O, (5)

latest(x ) = O ⇔ ∃ t : T • (t ,O) ∈ x ∧
@t1 : T; O1 : O | (t1,O1) ∈ x ∧ t ≤ t1

earlierThan : T× P(T×O) 7→ P(T×O) (6)

where ∀ t : T; x , y : P(T×O) • earlierThan(t , x ) = y ⇔
y ⊆ x ∧
∀(u, p) : x | u < t • (u, p) ∈ y ∧
∀(u, p) : y • u < t

Given a set of pairs from time T to ontologies O, the function latest
returns the latest ontology from this set. This function can be applied to
an entity (concept or object) C to return the latest ontology definition:
latest(OC ).

The function earlierThan returns the maximal subset of a set of pairs
from time T to ontologies O such that the timestamp of each of the pairs in
this subset is earlier than the given time point.

5.3. Dynamic Composition & Reasoning of Ontologies

As stated in Section 3.2, we employ ontological inference to validate the
integrity of concept and object definitions. Three types of reasoning tasks
are performed for this purpose: ontology consistency checking, OWL class
satisfiability checking (for concepts), and OWL individual assertion checking
(for objects). Each of the latter two tasks is defined against an ontology O28.

O 2 ⊥ [Ontology consistency] (7)

O |= ¬ C v ⊥ [class satisfiability] (8)

O |= C(a) [individual class assertion] (9)

An inconsistent ontology can imply a false formula, hence the consistency
of an ontology needs to be maintained. Definition (7) states that a consistent

28Note that O is a simplification from the more verbose and precise definition involving
domain of interpretation ∆I , interpretation function I, the TBox and the ABox. Inter-
ested readers are referred to [25] for details.
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ontology O should not be a model for the owl:Nothing (⊥) class. Definition
(8) states that, with respect to an ontology O , for the class C to be consistent,
the logical expression that C is not a subclass of ⊥ must follow from O .
Similarly, definition (9) states that for an individual a to be an instance of
class C, this logic expression must follow from the ontology O .

Versioning of ontologies makes it possible for concepts and objects to
evolve independently and it is one of the main reasons of the improved ex-
tensibility of the ontology-centric architecture. However, independent co-
evolution of concepts and objects makes it a more challenging task to main-
tain semantic integrity of each of these entities, and hence that of the whole
data management system.

In the rest of this section, we present in detail how ontologies of differ-
ent concepts/objects are composed dynamically for the inference task. The
formal definitions presented here are inspired by works on distributed de-
scription logics [26] and tiered logic for agents [27].

First of all we introduce the notion of localities for reasoning. Locality
is an abstract concept: a locality gives scope for ontology reasoning tasks.
There is one local locality for each entity (concept or object) C . As C
uniquely represents the entity, we use C to represent its locality as well.
There is also a single and unique global locality, denoted G. With these
notations, we denote an ontology OC for entity C in its own locality OC

C ,
OA

C in the locality of A, and simply OC in the global locality, omitting the
superscript G.

5.3.1. Transfer Rules Between Ontology Localities

The dynamic composition of ontologies requires reasoning on ontologies
to be applied for different concepts/objects in their own localities. Moreover,
sometimes reasoning needs to be performed on the global level. Ontologies
need to be transferred semantically for these reasoning tasks. Contexts (lo-
calities) and transfer rules for logics have been defined in [28, 29]. Such rules
have also been shown to be sound and complete [29]. Here we adapt these
rules for ontologies and show them in Figure 7, where O represents an on-
tology, α, β represent the right-hand side boolean expressions in Definitions
(7), (8) and (9), and l and k represent localities. The symbol |=l is to be
interpreted as “shows in the locality l” and |= as “shows globally”.

The (enter) and (exit) rules allow a formula to move up and down be-
tween localities. The (K) and (DT) rules ensure that logical connectives
are preserved between localities. The (Flat) and (Flat-0) rules preserves
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O |=l α

O |= αl
[exit]

O |=l α

O |= αl
[enter]

O |= (α→ β)l

O |= (αl → βl )
[K]

O |= (¬ α)l ⇔ ¬ (αl )
[DT]

O |= (αl )k ⇔ αl
[Flat]

O |=l α⇔ αl
[Flat-0]

Figure 7: Transfer rules for ontologies between localities.

truth/falsehood between localities.

5.3.2. Global Ontology Consistency

We maintain global consistency by ensuring the intersection of latest on-
tologies for all concepts is consistent (is not a model for ⊥, as stated in
Definition (7)). This is performed whenever a new concept is added or an
existing concept is modified. For any given concept C , we lift the individual
ontology from its own locality to the global locality.

For a data management system in this architecture with n concepts, the
overall data model OG is the intersection of all ontologies in the global lo-
cality:

OG =
n⋂

i=1

OCi where OCi : O (10)

5.3.3. Concept Satisfiability

As stated before, each version of the ontology of a concept defines the
concept and possibly references other concepts. Hence, the satisfiability of
the concept C (at any given time point) is equivalent to the satisfiability of
the corresponding OWL class C in the ontology OC

C .
The ontology of any other concept that is referenced in the definition of

C needs to be included before the satisfiability of C is checked, as defined in
Definition (8). For any concept C , we define a function closureC that returns
the closure of a version of its ontology O :

closureC : O→ O • ∀(O , t) : OC , closureC (O) = OC
C ∩ (

⋂
OC

Ci
) (11)

for all concepts Ci referenced in C and

OC
Ci

= closureCi (latest(earlierThan(t ,OCi )))
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Let OC denote a particular version of ontology for C at time point t (i.e.,
(t ,OC ) ∈ OC ). Let OC denote the ontology closure for OC . Therefore,

OC = closureC (OC ) (12)

OC |= ¬ C v ⊥ (13)

In Definition (11), the ontology OC is defined to be the intersection of
OC and all ontologies of other concepts lifted from their own localities and
lowered to the locality C . Note that we apply the two functions in Definitions
(5) and (6) to get the latest ontology from Ci that is earlier than t , as it does
not make sense to reference an ontology defined in the future. OC then is
used to check the concept satisfiability in Definition (13).

5.3.4. Individual Class Assertion

Similar to concept satisfiability, individual class assertions involve the
closure of the object ontology, which includes the ontology of the object
itself, the ontology closure of the concept and the ontologies of all the other
objects referenced in this object. For a given object A, we define a function
closureA that returns the closure of a version of its ontology.

closureA : O→ O • ∀(O , t) : OA, closure(O) = OA
A ∩ (14)

closureC (OC (mapsToVersion(t)))∩

(
⋂

OA
Ai

), for all objects Ai referenced in A and

OA
Ai

= closureAi (latest(earlierThan(t ,OAi )))

For object A, let OA denote a particular version of its ontology at time
point t (i.e., (t ,OA) ∈ OA). Let C be the concept that defines object A.
Finally, let C denote the OWL class corresponding to concept C and a denote
the OWL individual corresponding to A. The closure of the ontology OA and
the class assertion are as follows:

OA = closureA(OA) (15)

OA |= C(a) (16)
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5.4. Bootstrapping Concept Co-evolution

In Section 4 we described the base ontology and a domain-specific ontol-
ogy for phenomics. In these ontologies, initial definitions (first version of the
ontologies) are defined. These ontologies will be decomposed to individual
concept ontologies during the system bootstrapping process. Specifically, all
rdfs:subClassOf (in the form of C v D) and owl:equivalentClass (in the
form of C ≡ D) axioms will be grouped by their left-hand side classes. Prop-
erty and other common definitions will be grouped into a common ontology.
After bootstrapping, the concepts will then evolve independently.

6. The PODD Data Management System

6.1. Implementation

Based on the ontology-centric architecture presented in Section 3 and
the base ontology presented in Section 4 we have implemented the PODD
data management system. An instance of the PODD architecture has been
deployed in production for the Australian Plant Phenomics Facility (APPF)
and can be found at http://podd.plantphenomics.org.au/. The source
code of the PODD repository software has been published in this repository29,
demonstrating the versatility of the architecture.

In developing the PODD system, we chose to employ a number of mature
technologies, as can be seen in Figure 8. (1) We use Fedora Commons for
the storage and retrieval of domain objects. Together with raw data files,
the OWL (for concepts) and RDF (for objects) definitions of each concept
and object are stored in a versioned datastream PODD, which is used by the
PODD system in various tasks such as object creation, rendering, validation,
update and visualization. Moreover, Fedora supports distributed storage
through plugins, making it possible to increase the repository storage with
demand. (2) We incorporate the Sesame [30] triple store to support complex
query answering using SPARQL. Sesame contexts are used to give scope to
the RDF triples for each domain object. As described in Section III, access
control needs to be enforced on a per project basis, which also needs to be
enforced for query answering in the triple store. By identifying triples of
individual objects, we are able to control contexts a user can access through

29http://podd.plantphenomics.org.au/podd/object/poddObject:696
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Figure 8: The architecture and main components of the PODD system.

query expansion. (3) We use the Solr30 open-source search engine platform
to provide full-text search and faceted browsing capabilities. Similar to the
structure of the Sesame triple store, there is a one-to-one correspondence be-
tween domain objects in the repository and the Solr documents, the logical
indexing units. (4) We use the Pellet [31] open-source OWL reasoning en-
gine together with the ontology manipulation library OWL API [32] for the
inference of ontologies. (5) Lastly, we use a MySQL database to store user
and access control related information, as it is orthogonal to other domain
concepts.

Although the architecture and the system are based on ontologies, the
interface is designed to hide ontology-related complexity from the user and
present information in an easy to use manner for all repository functions.
For example, Figure 9 shows the browser view of a plant phenomics project
that investigates leaf stomata in the Arabidopis thaliana model plant. In
this view, the objects are shown in a tree-like structure by following parent-
child assertions of subproperties of contains defined in the base and domain
ontologies.

30http://lucene.apache.org/solr/
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Figure 9: The browser view of a plant project in the PODD repository.

6.2. Recent Development

To ease the importing of large amounts of data from existing databases
into PODD, we have designed the PODD-TAB format, a simple tab-delimited
flat file format that captures essential meta information about raw data. The
PODD-TAB format is designed as an intermediate format for users without
knowledge of ontologies. Together with the PODD-TAB format, we have de-
veloped APIs and tools that enables automatic deposit of data from databases
in the Australian Phenomics Network.

As we stated previously, we store semantic metadata in an RDF triple
store. To support advanced users, we have developed a query interface so
that users can create complex SPARQL queries to interrogate the repository.
SPARQL queries are also used internally by the repository to retrieve infor-
mation otherwise hard to obtain. For example, for each object, we use a
SPARQL query (Figure 10) to retrieve all the objects that refer to it.

Development has also started on a module to support federated authen-
tication based on the Shibboleth authentication framework31, which allows
cross-organization single sign-on and removes the need for users to create a
new user account for a Web application. Making use of the Australian Access
Federation (AAF)32 infrastructure allows users from AAF-enabled research

31http://shibboleth.internet2.edu/
32http://www.aaf.edu.au/
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PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX poddObject: <http://www.podd.org/object#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX poddModel: <http://www.podd.org/poddModel#>

SELECT DISTINCT ?subject ?type ?label

WHERE {

?subject ?p ?o .

?p rdfs:subPropertyOf poddModel:refersTo .

FILTER (str(?o) = ’http://www.podd.org/object#poddObject:7792’)

?subject rdf:type ?type .

?subject rdfs:label ?label .

filter (regex(str(?type), ’http://www.podd.org/poddModel#’))

} ORDER BY (?type) (?label)

Figure 10: A SPARQL query to obtain all objects that refer to object poddObject:7792.

institutes and universities (more than 60 at the moment) in Australia and
New Zealand to access PODD in a seamless manner. The authentication
functionality has been implemented and will be integrated in the next major
release of PODD.

6.3. Preliminary Evaluation

We have started to deploy the PODD system in Australian phenomics
research centers including APPF and APN and begun engaging users in
the evaluation of the performance, flexibility, usability and scalability of the
system. User feedback to date has shown that the system is intuitive and
efficient.

It is well known that native RDF triple stores are not yet as efficient as
relational database systems, especially in terms of query performance [33, 34].
In the PODD system, we employ a number of approaches to alleviate this
problem. Firstly, we give scope to RDF triples of individual objects so a
SPARQL query will only be matched against a (potentially very small) subset
of the entire triple store, therefore improving query performance. Secondly,
we index all RDF datatype property assertions and RDF type assertions in
the Solr index to enable faceted searching and filtering. Together with the use
of logical operators in search queries, full-text search can be used effectively
to perform complex discovery tasks in most cases.

In summary, following the ontology-centric architecture and through the
use of mature technologies we have successfully developed PODD, a scalable,
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extensible data management system. At the same time, data management
tasks such as versioning, logical organization of data, authentication & au-
thorization and discovery are all supported effectively. The PODD system
demonstrates the feasibility and practicality of the proposed ontology-centric
architecture.

7. Conclusion

In this work, our contribution to scientific data management is three-fold:
firstly, the proposal of the ontology-centric architecture for developing highly
extensible and domain-agnostic data management systems that support the
evolution of domain concepts; secondly, the development of a base ontology
that defines essential concepts in a domain-independent fashion; and thirdly,
the development of a phenomics ontology and the data management system
(based on both existing and new technologies) that serves as a validation of
the feasibility of the proposed architecture in a virtual laboratory environ-
ment.

We have identified a number of future work directions that we would like
to pursue:

• We will investigate the integration with existing domain ontologies such
as the Gene Ontology and the Plant Ontology. Potential approaches
include using terms defined in these ontologies to annotate metadata
objects, and establishing semantic links between concepts/properties
through ontology alignment/mapping.

• We would like to investigate the generalization of the ontology-centric
approach and the further abstraction of the PODD base ontology so
that the architecture can be applied to other domains including arche-
ology, geological and environmental sciences.

• Thus far we have focused on essential functionalities of the PODD
system. We will continue the development of the PODD system to
provide additional functionalities such as data visualization, data min-
ing and finer-grained representation of repository objects (file contents
and metadata) in RDF.

• As introduced in Section 1, a huge and growing volume of semantic
metadata have been made publicly available as part of the Linked
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Data project [9]. In the Linked Data project, data is organized by
application domain into individual RDF datasets. Thus far datasets
about a number of domains, including biomedical research, govern-
ment, geospatial, media and scientific publications, have been created.
As of March 201133, the Linked Data cloud contains more than 28 bil-
lion RDF triples and more than 395 million inter-dataset links. This
metadata is rich, of high quality and continuously curated. It would
be very beneficial for a data management system to reuse this public
knowledge.

In our ontology-centric architecture, domain concepts and objects are
described using ontological terms in RDF, and such semantic metadata
is stored in an RDF triple store. Such a design encourages knowledge
integration through the reuse of existing RDF vocabularies. We will
investigate a methodology for adding semantic annotation to concepts
and objects in the repository.

We will also investigate approaches to semantically disseminate con-
cepts and objects in our architecture in Linked Data style. As stated
above, due to the ontology-centric nature of the architecture, we do not
foresee any major difficulties.

• We will investigate the feasibility of extending the PODD ontology and
architecture to support scientific workflow modeling and composition in
a virtual laboratory environment, possibly integrating with the widely-
used myExperiment ecosystem [35].

• Our current authorization framework is based on user roles, which
are hardcoded and hence inflexible. We will investigate authorization
frameworks such as Shibboleth, XACML34 and SemanticAuthz [36] and
their suitability in our framework.

• Last but not least, we will further enhance privacy preservation in the
dissemination of repository contents through adoption of fine-grained
privacy models such as [37].

33http://www4.wiwiss.fu-berlin.de/lodcloud/state/
34http://www.oasis-open.org/committees/xacml/
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