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Abstract. Graph embedding methods are useful for a wide range of graph
analysis tasks including link prediction and node classification. Most graph
embedding methods learn only topological structure of graphs. Nevertheless,
it has been shown that the incorporation of node attributes is beneficial in
improving the expressive power of node embeddings. However, real-world
graphs are often noisy in terms of structure and/or attributes (missing and/or
erroneous edges/attributes). Most existing graph embedding methods are sus-
ceptible to this noise, as they do not consider uncertainty during the modelling
process. In this paper, we introduce RASE, a Robust Attribute and Structure
preserving graph Embedding model. RASE is a novel graph representation
learning model which effectively preserves both graph structure and node at-
tributes through a unified loss function. To be robust, RASE uses a denoising
attribute auto-encoder to deal with node attribute noise, and models uncer-
tainty in the embedding space as Gaussian embeddings to cope with graph
structure noise. We evaluate the performance of RASE through an extensive
experimental study on various real-world datasets. Results demonstrate that
RASE outperforms state-of-the-art embedding methods on multiple graph
analysis tasks, and is robust to both structure and attribute noise.

Keywords: Robust Graph Embedding-Node Classification-Link Prediction.

1 Introduction

Much real-world data can be naturally delineated as graphs, e.g. citation net-
works [1,5,13], social-media datasets [6] and language networks [13]. Graph embedding
methods [4,5,10,13] have been proposed as an effective way of learning low-dimensional
representations for nodes to enable down-stream machine learning tasks, such as link
prediction, node classification and visualization, on these complex graph data. Most
existing graph embedding methods learn low-dimensional representations from graph
topological structure only [4,10,13]. However, nodes in a graph usually have rich infor-
mation, and these supplementary attributes can be utilized in graph embedding along
with the graph structure to produce more meaningful node embeddings [1,2,5,8,12,18].

Graphs constructed from the real-world data are usually non-deterministic and
ambiguous [11], manifested by uncertain and ambiguous edges/node-attributes. Thus,
the real-world graphs may be corrupted with missing/erroneous edges and miss-
ing/erroneous node attributes. For example, most knowledge graphs, originating from
the Semantic Web, follow the “Open World Assumption” [11] (i.e. the edges unob-
served are simply unknown instead of untrue), which means that graph structures
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are far from complete and many edges are missing. Also, much attribute information
is abstracted from free text (e.g. users’ post on social media, text information on
Semantic Web etc.) and is usually imprecise or ambiguous due to the limitation
of data sources or abstraction tools. We term this non-deterministic and ambigu-
ous phenomena in graph structure and node attributes as “structure noise” and
“attribute noise” respectively.

A great challenge the existing graph embedding methods face when incorporat-
ing both graph structure and node attributes in embedding learning, is the noise
prevalent in these two aspects which can mislead the embedding technique to result
in learning invalid latent information. Recently, several work has been proposed to
model the uncertainty present in graph data [1,16,17]. Most of these work, including
VGAE [8], Graph2Gauss [1] and DVNE [17], focus on modelling the uncertainty of
the node embeddings by representing the nodes with a probabilistic distribution in the
embedding space. Since these studies focus on preserving graph structural proximity
by measuring the distance between probability distribution embeddings, uncertainty
modelling of these methods can only capture structure noise. Therefore, they do not
explicitly account for the attribute noise which is common in the real-world graphs.

In this work, we introduce RASE, a novel graph embedding framework to address
the aforementioned challenges. RASE learns robust node representations, exploiting
both graph structure and node attributes simultaneously. To be robust to noisy
real-world graphs, carefully-designed strategies have been introduced to model both
structure and attribute noise in RASE. Attribute noise is modelled with a denoising
attribute auto-encoder to maintain the discreteness and sparseness of textual data via
introducing noise in the input through a binomial distribution. On the other hand,
structure noise is modelled in the latent layer via modelling the latent representations
with a Gaussian distribution. To preserve the transitivity in the embedding space with
a linear computational cost, 2-Wasserstein distance is used as the similarity measure be-
tween the distributions in Gaussian space. Extensive experiments have been conducted
on five different real-world datasets. The experimental results show that our method
significantly outperforms the state-of-art methods in generating effective embeddings
for node classification, link prediction and visualisation. Moreover, we introduce a novel
experimental setting which simulates random structure noise and random attribute
noise to demonstrate the robustness of our model in embedding noisy graphs.

2 Related Work

There are three lines of effort most related to this work: structure preserving graph
embedding, attributed graph embedding and noise modelled graph embedding.

Structure preserving graph embedding: These embedding methods attempt to
conserve observable graph structure properties in the embedding space. LINE [13]
learns from structural closeness considering first- (connected nodes) and second-order
(neighbourhood nodes) proximity. DeepWalk [10] and node2vec [4] learn node em-
beddings from random walk sequences with a technique similar to Skip-Gram [9)].
DVNE [17] uses an auto-encoder architecture to encode and reconstruct the graph
structure. All these algorithms focus on graph structure only.
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Attributed graph embedding: Recent studies [1,5,6,8,12,15,16,18] show that the
incorporation of node attributes along with graph structure produces better node em-
beddings. TADW [15] incorporates text attributes and graph structure with low-rank
matrix factorization. GraphSAGE [5] is a CNN-based technique that samples and
aggregates neighbouring node attributes. Graph2Gauss [1] captures multi-hop neigh-
bours and uses attributes for embedding initialization. VGAE [8] is a graph convolution
network (GCN) method, which aggregates neighbouring attributes. In most studies,
node attributes are only used for node embedding initialization, but not during model
training. DANE [2] proposes a deep non-linear architecture to preserve both aspects.

Noise modelled graph embedding: Attributed graphs can be noisy in terms of
graph structure and node attributes. Most of the existing graph embedding methods
represent nodes as point vectors in the embedding space, ignoring the uncertainty of
the embeddings. In contrast, Graph2Gauss [1], VGAE [8], and DVNE [17] capture the
uncertainty of graph structure by learning node embeddings as Gaussian distributions.
DVNE [17] proposes to measure distributional distance using the Wasserstein metric as
it preserves transitivity, while the other two uses KL divergence. However, these works
ignore the modelling of uncertainty of node attributes. SINE [16] is a recent work on in-
complete graphs which focuses only on missing structure and discrete node attributes.

3 Methodology

Problem Formulation Let G=(V,E,X) be an attributed graph, where V is the
set of nodes, F is the set of edges in which each ordered pair of nodes (4,5) € E is associ-
ated with a weight w;; >0 for edge from i to j, and Xy p is the node attribute matrix,
where x; € X is a D-dimensional attribute vector of node i. We learn to embed each
node i €V as a low-dimensional Gaussian distribution z; =\ (u;,02), where p; €RE,
0?2 e REXL with the embedding dimension L < |V|, D. The learning goal is such that,
nodes that are closer in the graph and have similar attributes, are closer in the embed-
ding space, and node embeddings are robust to structure noise and attribute noise.

3.1 RASE Architecture

Figure 1 shows the architecture of RASE which is an end-to-end embedding framework
that learns from both node attributes and graph structure, with two main components:
Node Attribute Learning and Graph Structure Learning. To deal with attribute noise,
RASE corrupts node attributes by introducing a random noise ¢; sampled from a bi-
nomial distribution, which are then projected to a low-dimensional intermediate repre-
sentation u;. RASE takes this u; as input and simultaneously performs node attribute
learning and graph structure learning. By reconstructing the node attributes from u;,
the model preserves attributes (with Euclidean distance to preserve transitivity) while
being robust to attribute noise. RASE models uncertainty of the graph structure noise
by learning Gaussian embeddings and capturing neighbourhood information measured
with Wasserstein metric to preserve transitivity property in the embedding space.

! We learn o? as a diagonal covariance vector, o; € R, instead of a covariance matrix
to reduce the number of parameters to learn.
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Fig. 1: RASE architecture.

Node Attribute Learning We learn node attributes with an unsupervised learning
function (as opposed to semi-supervised GCN methods). To deal with missing and
noisy attributes, we slightly corrupt the attribute vectors using random noise. In
most real-world graphs, node attributes can be very sparse, since they are either
tf-idf vectors of text features or one-hot vectors of categorical features. Therefore, we
pull noise from a binomial distribution, to represent a masking noise but still depict
the trends in the original data. Accordingly, we inject some impurity to the original
node attribute vector x; €R” by sampling a random binary noise vector &; € {0,1}”
from a binomial distribution B with D (i.e. attribute vector dimension) trials and
p success probability. We set p € (0.90,0.98) to ensure that the noise is small and
its introduction does not change original data trends. We produce the corrupted
attribute vector x; € RP by performing Hadamard product: x; =x; ®e¢;.

The corrupted attribute vector is transformed into an intermediate representation
u; € R™ where m is a reduced vector dimension using an encoding transformation
function, g:RP — R™. Subsequently, this intermediate vector is fed as input to a
decoder, h:R™—RP, to reconstruct the attribute vector %; € R”. Note here that,
these encoder and decoder functions can easily be implemented with MLP layers or
sophisticated GCN layers [8], and to capture the non-linearity in data we can have
deep neural networks. But we observe that MLP architecture is more simple and
efficient, hence scalable on large-scale graphs. We define the attribute reconstruction
loss as the Euclidean distance between the original and reconstructed attributes:

i =h(w;) =h(g(x;)) 1)
ﬁa:ZHXz‘—f{in (2)
iev

L1 regularization has been adopted as we have sparse attribute vectors constructed
from textual data. By minimizing the attribute reconstruction loss we encourage
the encoder g to generate robust latent representations, u;, preserving attribute
information which are used as inputs to the Graph Structure Learning component.
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Graph Structure Learning We use the intermediate vector, u;, from the auto-
encoder in the Node Attribute Learning component, as it encodes attribute latent
relationships between nodes. We define two parallel transformation functions to model
anode’s embedding as a Gaussian distribution representation to account for structural
uncertainty (due to noise). Functions f, and f, learn the mean vector u; and the
diagonal covariance vector o; of u; respectively. Again, we have the flexibility to
select either MLP or CNN based architecture for these functions. To obtain positive
o; for interpretable uncertainty we choose activation function at the output layer
accordingly. Thus, the final latent representation of node i is z; =N (;,07), where:

pi=fu(w;) and o= fs(uw;) 3)

To preserve the structural proximity of nodes in the graph, we assume that the
nodes which are connected with a higher edge weight are more likely to be similar.
Therefore, we attempt to pull the embeddings of these nodes closer in the embedding
space. We define the prior probability for connected nodes as P(z, j)= %
Since RASE’s node embeddings are Gaussians, we choose a probability distance
metric to compute the distance between nodes. Thus, motivated by DVNE [17], to
preserve transitivity property in the embedding space, we choose the Wasserstein
distance: 2-nd moment (W3). This metric allows to discover specific relations between
nodes based on their semantic relations and similarities by leveraging the geometric
properties of the embedding space. As a result, when we model the explicit local
neighbourhood edges, implicit global neighbourhood proximity can be modelled
due to triangle inequality property. We define §(z;,z;) as the Wy distance for our
embeddings of nodes, i and j. Modelling only the diagonal covariance vectors results
in 0,0 =0;0;. Hence, the distance computation [3] simplifies to:

8(2i,25) =Wa(2i,2;) = (|| =g |3+ || 0= || 7) /2 (4)
The observed joint probability between nodes 7 and j is defined as:

1

P(’L,j) — Sigmoid(—é(zhzj))) = m

(5)
We minimize the distance between the prior and observed probability distributions
for all edges observed in the graph. Since P and P are discrete distributions, we
define structural loss function:

>

=

Lo=Dir(PIP)= Y Pligos( b0

P o= 32 PligogPli)x— Y wilogPlinj)
(i,j)€E k

(i)€E ()€
(6)

For regularization of L, instead of regularizing mean and covariance functions
separately [14], RASE uses the strategy similar to [7] minimising KL divergence
between the learned Gaussian representation and the standard normal distribution.
Thus, it will ensure that the final latent space will be closer to a standard Gaussian
space other than pushing values in both mean vectors and variance vectors to be
small. The regularization for node 7 is:

~

Dt (W (0.1)) = 3 (tr(o) + 71— L~log(det(c7))) 7
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By minimizing the overall structural loss function, we attempt to construct an embed-
ding space where nodes that are similar in terms of graph structure are also similar
in the embedding space, and robust to noisy graph structure.

Unified Training and Optimization To jointly preserve node attributes and
graph structure, we define a unified loss function by combining Eq. 2 and Eq. 6
with hyperparameter «. For simplicity, we omit the regularization terms in the two
components of RASE in the overall loss function to be minimized:

L=aLle+L, =a) |xi—%>— D wilogP(ij) 8)

3% (3,4)EE

For large graphs, this unified loss function is computationally expensive, since it has
to compute the attribute reconstruction loss (£,) for all the nodes, and the structural
loss (L) for all the edges. To optimize L,, we sample only a batch of nodes in
each epoch. To optimize L, we employ the negative sampling approach proposed
in Skip-Gram [9] and sample K negative edges for each edge in the training batch.

4 Experiments

We evaluate RASE against state-of-the-art baselines in several graph analysis tasks,
including node classification, link prediction and robustness on several public datasets.
Two additional tasks, visualisation and uncertainty modelling, can be found in the sup-
plementary materials. Source code of RASE and the datasets will be made available
upon publication.

4.1 Datasets

Social Media Networks [6]: BlogCatalog and Flickr (cf Table 1). Nodes on these
social media networks are users. The following relationships are used to construct the
edges. Attributes on BlogCatalog and Flickr are constructed with keywords in users’
blog description and users’ predefined tags of interests, respectively. Node labels are
users’ interest topics on BlogCatalog and groups users joined in Flickr.

Citation Networks [1]: Cora , Citeseer and Pubmed (cf Table 1). Nodes denote pa-
pers and edges represent citation relations. We use tf-idf word vectors of the paper’s ab-
stract as node attributes. Each paper is assigned a label based on the topic of the paper.

4.2 Compared Algorithms

We compare RASE to several state-of-the-art graph embedding methods: structure-
based non-attributed embedding methods (node2vec, LINE and DVNE); attributed
embedding methods (GraphSAGE, VGAE and Graph2Gauss); and uncertainty
modelling embedding methods (DVNE, VGAE and Graph2Gauss).

node2vec [4] is a random walk based node embedding method that maximizes the
likelihood of preserving nodes’ neighbourhood using biased random walks. LINE [13]
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Table 1: Statistics of the real-world graphs.

Dataset V| |E| D #Labels
Social media networks
BlogCatalog 5,196 369,435 8,189 6
Flickr 7535 239,738 12,047 9
Citation networks
Cora, 2,995 8,416 2,879 7
Citeseer 4,230 5,358 602 6
Pubmed 18,230 79,612 500 3

preserves first-order and second-order proximity information. We report results on a
concatenated representation of the two proximities (as suggested). DVINE [17] learns
a Gaussian distribution in the Wasserstein space for plain graphs. GraphSAGE [5] is
an attributed embedding method for graphs which learns by sampling and aggregating
features of local neighbourhoods. We use the unsupervised version of GraphSAGE
(since all other methods are unsupervised) with the pooling aggregator which performs
best for citation networks in the paper. VGAE [8] is an attributed GCN-based
embedding method which implements an auto-encoder model with Gaussian node
embeddings. Graph2Gauss (G2G) [1] is an attributed embedding method which
represents each node as a Gaussian distribution and preserves graph structure using
a personalized ranking of nodes based on multiple neighbouring hops. In addition, we
also evaluate task performance on Attributes, raw node attributes as input features
instead of learning node embeddings, for down-stream machine learning tasks.

RASE is our full model which jointly preserves node attribute and graph struc-
ture, and is robust to noise in real-world graphs. We also consider a non-robust
version, RASE(—R), for an ablation study. RASE(—R) does not model attribute
noise and learns point vectors, thus also ignoring structural uncertainty.

4.3 Experimental Settings

For all the models that learn point vectors, we set L =128 as the embedding dimension.
For a fair evaluation, we set L =64 in methods learning probability distributions
as embeddings including ours, so that the parameters learned per node is still 128
(1; € R and X; € R%). The other parameters for baselines are referred from the
papers and tuned to be optimal. For our two models and LINE, we set the number
of negative samples as K =5. The hyperparameter « is tuned to be optimal using
grid search on a validation set. We used the Adam optimizer with a learning rate
0.001. We report the results averaged over 10 trials.

4.4 Node Classification

In this task, each method learns the embeddings in an unsupervised manner, and a
logistic regression (LR) classifier is trained on these embeddings to classify each node
into their associated class label. We randomly sample different percentages of labeled
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Fig. 2: Node classification performance measured by micro-F1 score (y-axis) in terms
of percentage of labelled nodes (x-axis). RASE’s improvements are statistically
significant for p<0.01 by a paired t-test.

nodes (i.e. 1%,2%,...,10%) from the graph as training set for the classifier, and use
the rest for evaluation. We report micro- and macro-F1 scores which have been widely
used in the evaluation of multi-class classification [13,17]. Due to brevity reasons, we
present only micro-F1 scores in Figure 2, and a similar trend is observed in macro-F1
scores. We show our methods with solid lines, and baselines with dashed lines.

Based on the results in Fig. 2, we can see that RASE consistently outperforms
all the baselines in all the datasets with all the training ratios. Furthermore, in all
five datasets, RASE has demonstrated a larger improvement margin to the baselines
when only smaller numbers of nodes are used for training, e.g., a 174.9% improvement
over best performing baseline in Flickr at 1% labeled nodes. This performance
improvement is due to the attribute preserving component, which learns meaningful
latent representations from node attributes. Moreover, denoising the attributes in this
process also helps our model to deal with scarce data which is common in the real-
world graphs. Also, our proposed structure learning method has captured useful local
and global node similarities (due to the transitivity-preserving property in Ws metric).

Overall, RASE(—R), which is non-probabilistic and models only point vectors,
manifests superiority among the non-probabilistic methods (i.e. node2vec, LINE
and GraphSAGE), consistently outperforming them in all datasets. Interestingly,
on BlogCatalog, Flickr and Cora, RASE(—R) also substantially outperforms the
probabilistic models DVNE, VGAE and G2G. This emphasizes the effectiveness of
our attribute preservation and structure learning method, even in the absence of
uncertainty modelling.
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Table 2: Link prediction performance.

Cora Citeseer Pubmed

Algorithm AUC AP AUC AP AUC AP

node2vec 79.11 77.99 79.91 82.08 91.18 91.49
LINE 79.12 78.91 71.20 72.11 75.32 76.81
DVNE 65.73 70.33 68.16 73.42 50.66 50.78
Attributes 88.06 83.66 81.53 75.60 82.98 77.71
GraphSAGE 81.76 83.19 83.33 85.38 89.43 90.90
VGAE 93.53 95.33 95.46 96.47 96.11 96.09
G2G 95.92 95.82 96.28 96.54 95.75 95.65
RASE(—R) 95.42 96.18 95.60 96.25 94.54 93.84
RASE 96.88 96.82 97.82 97.69 96.40 96.21

4.5 Link Prediction

This task aims to predict future links using the current graph structure and attributes.
We randomly select 20% edges and an equal number of non-edges, and combine the
two as the test set. The remaining 80% are used for embedding training. Then the
node embeddings are used to compute the similarity between each test node pair, to
see the likelihood of a link’s existence between the two nodes. In Gaussian embedding
methods, we use negative Wasserstein distance (RASE, DVNE) and negative KL
divergence (G2G) to rank the embedding pairs [17,1]. For other methods (RASE(—R),
node2vec, LINE and GraphSAGE), we use dot product similarity of node embedding
for ranking, and measure AUC and AP scores [1,8]. For brevity reasons, we only present
citation networks in Table 2, and the trend is similar in the social media networks.

RASE clearly outperforms the state-of-the-art embedding methods by a significant
margin in all the graphs, demonstrating the effectiveness of our model in capturing
structural information and attribute information via the proposed method. RASE
outperforms RASE(—R), showing that accounting for attribute noise and structure
noise collectively is beneficial. This is also validated by the performance gain of the
uncertainty modelling methods, VGAE and G2G, over this non-robust RASE(—R).

Moreover, the methods that learn from graph structure only (i.e. node2vec, LINE
and DVNE) are significantly outperformed by the attributed embedding methods
(i.e. RASE, RASE(—R), GraphSAGE, VGAE and G2G).

RASE(—R) is the best performing model among the non-probabilistic methods
(i.e. node2vec, LINE and GraphSAGE), demonstrating that its vectors have learnt
meaningful structural similarities between nodes along with node attributes.

4.6 Robustness

We evaluate RASE and the state-of-art baselines to see how they can deal with
noise in graphs. In this section, we introduce a novel evaluation task to assess the
robustness of graph embeddings to random structure and attribute noise. We inject
some noise into the graphs by intentionally corrupting the graph structure and node
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Table 3: Link prediction performance in Citeseer with structural noise.

% of noisy 0% 10% 20% 30% 40% 50%
edges added AUC AP |[AUC AP |[AUC AP [AUC AP |AUC AP |AUC AP
node2vec 72.99 76.76166.74 70.64|62.78 66.27 |57.57 61.31|56.74 60.15]56.21 59.05
LINE 53.09 49.95152.24 49.23|52.23 48.82|52.58 49.54|51.13 48.36|51.18 48.62
DVNE 57.89 59.43155.99 57.06|52.89 55.19|55.47 56.61|53.15 55.36|53.58 55.39
GraphSAGE |[75.48 78.16|73.86 76.50|73.09 75.36|72.93 74.87|71.81 73.39|71.29 72.12
VGAE 90.20 92.48|88.60 91.14[86.92 89.84 [85.79 88.94|85.95 88.74|84.32 87.46
G2G 91.33 91.91|84.83 87.16|79.73 83.18|77.59 81.81|76.38 80.16|78.24 81.43
RASE(—R) ]90.10 91.24|90.18 90.58|89.72 89.26|88.81 89.40(86.99 87.71|86.10 86.46
RASE 95.95 95.93(94.90 94.88(94.33 94.47(93.52 93.48|92.62 93.17|92.22 92.48

attributes. This experiment is conducted on all datasets, and we report the results
on Citeseer, since all the datasets demonstrate similar trends.

Structural noise: We corrupt the graph structure by hiding randomly selected
edges 50% (to mimic missing edges which we also use as the test set) and randomly
adding some non-existing edges (edges not in the original graph to mimic erroneous
edges). We vary the percentage of noisy edges added to the graph from 0%-50%, and
observe AUC and AP decline with the increasing noise in link prediction task. The
results are presented in Table 3.

From Table 3, we can see that RASE performs the best in all the structural noise
percentages, showing that it is robust to real-world noisy graph structures. In addition
to this, with the increase in noise ratio from 0% to 50%, RASE’s AUC degradation is
only 3.8%. Also, RASE outperforms its non-robust version, RASE(—R), which shows
that the proposed uncertainty modelling technique to mitigate structure noise is
effective. In contrast, though DVNE, VGAE and G2G also model uncertainty in the
embeddings, their performance degradation is quite significant (7.4%, 6.5% and 14.3%
in AUC respectively) when the noise ratio is increased from 0% to 50%. VGAE is based
on GCN, which aggregates the neighbouring attributes into a convex embedding. Thus,
it is heavily affected by noisy neighbours, as errors get further exaggerated. The hop-
based structural ranking in G2G is sensitive to false neighbourhood formation. Further-
more, the square-exponential loss function used for pair-wise ranking in both G2G and
DVNE does not have a fixed margin and pushes the distance of the negative edges to
infinity with an exponentially decreasing force [1]. Hence, these methods are highly sen-
sitive to erroneous and missing edges in the graph. In contrast, RASE is mildly affected
due to its carefully designed sigmoid structural loss function and the extra information
learned about the global neighbourhood via the transitivity property of W5 metric.

Attribute noise: To evaluate the robustness of the methods to random attribute
noise, we corrupt the node attribute vectors randomly. Then, we assess node classifi-
cation performance of the learned embeddings on these corrupted graphs. Specifically,
we sample a masking noise from a binomial distribution with D (i.e. attribute dimen-
sion) trials and p=0.70 probability, and perform Hadamard product with attribute
vectors of some randomly selected nodes. Thus, approximately 30% of the attributes
for each selected node are corrupted. We also vary the percentage of nodes corrupted
from 0%-50% to investigate the micro- and macro-F1 decline. Since we are interested
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Table 4: Node classification performance in Citeseer with attribute noise.

% of nodes micro (mi)- and macro(ma)- F1 score
corrupted 0% 10% 20% 30% 40% 50%
(830% noise)) mi ma | mi ma| mi ma| mi ma| mi ma| mi ma
GraphSAGE |42.88 13.18|42.28 14.76|41.82 13.31|41.67 16.24|41.56 16.24|41.25 16.15
VGAE 77.85 76.98|76.95 77.04|76.11 76.09|75.23 75.31|74.04 74.15|73.81 73.68
G2G 84.05 84.15(82.30 82.42|81.45 81.48(79.79 79.89|78.96 78.93|79.94 79.95
RASE(—R) |82.04 82.15|81.23 81.40|80.22 80.45|79.94 79.93|78.12 78.24|77.67 77.61
RASE 85.82 85.78|84.95 84.96/83.84 83.80|83.51 83.44(82.52 82.39|82.98 82.85

in evaluating the attribute robustness of the embedding methods, we experiment
with attributed embedding methods only. The results are reported in Table 4.

Results in Table 4 show that RASE is robust to random node attribute noise,
having the highest macro- and micro-F1 scores steadily across all noisy node percent-
ages. Moreover, RASE only shows a 3.3% degradation in micro-F1, when we increase
the proportion of corrupted nodes from 0% to 50%. The small degradation can be
attributed to the node attribute denoising step. RASE also outperforms its non-
robust counterpart across all the settings, showing the effectiveness of attribute noise
modelling component. GraphSAGE shows a poorer node classification performance
when compared to others, which shows that noisy attributes has misled the model
to learn inexact node embeddings. Negative effect of noisy attributes of neighbouring
nodes in GCN’s aggregation step causes the lower performance of VGAE when its
performance is compared against RASE and G2G. Overall, G2G shows a modest
micro-F1 decline (i.e. 4.9% from 0% to 50%), since the Gaussian node embeddings
have captured the attribute uncertainty via the variance terms.

4.7 Parameter Sensitivity Analysis

We study the sensitivity of attribute reconstruction learning weight () and embed-
ding dimension (L) in RASE. Fig. 3 shows the micro-F1 for node classification on
Citeseer averaged over 5 trials. In general, >0 shows better performance than a=0,
demonstrating the positive effect of learning from node attributes. The impact of
attribute preservation is optimal near a =10 in RASE and a=40 in RASE(—R). Also,
RASE performs increasingly better when the embedding dimension L is increased,

~-RASE -+RASE(-R)
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Fig. 3: Parameter Sensitivity Analysis. Micro-F1 (y-axis) in node classification on Citeseer.
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since larger dimensions can encode more meaningful latent information. When L > 32,
RASE and RASE(—R) are already complex enough to handle the data and further
increments are less helpful.

5 Conclusion and Future Work

In this work, we present RASE, an end-to-end embedding framework for attributed
graphs. RASE learns robust node embeddings by preserving both graph structure
and node attributes and considering random structure and attribute noise. RASE has
been evaluated with respect to a number of state-of-the-art embedding methods on
several public datasets in different graph analysis tasks, and the results demonstrate
that our method significantly outperforms all the evaluated baselines on all the tasks.
We intend to study the effect of adversarial attacks on graphs for future work.
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