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Abstract
Despite the huge progress in scene graph genera-
tion in recent years, its long-tail distribution in ob-
ject relationships remains a challenging and pes-
tering issue. Existing methods largely rely on ei-
ther external knowledge or statistical bias infor-
mation to alleviate this problem. In this paper,
we tackle this issue from another two aspects: (1)
scene-object interaction aiming at learning specific
knowledge from a scene via an additive attention
mechanism; and (2) long-tail knowledge transfer
which tries to transfer the rich knowledge learned
from the head into the tail. Extensive experiments
on the benchmark dataset Visual Genome on three
tasks demonstrate that our method outperforms cur-
rent state-of-the-art competitors. Our source code
is available at https://github.com/htlsn/issg.

1 Introduction
Scene graph generation is a fundamental task in computer
vision that has been successfully applied to many other
tasks, including image captioning [Yang et al., 2019], im-
age retrieval [Johnson et al., 2015] and commonsense rea-
soning [Zellers et al., 2019]. Given an image, a relation-
ship between objects in the image is typically denoted as a
triple: (subject, predicate, object), where the predicate can
also be denoted as relation. To detect such relationships re-
quires the understanding of the image content globally. In
scene graph generation, the representation of a relationship
needs to preserve semantic information of the triple as well as
the inherent attributes of the objects and the relations between
them. It is a challenging task due to the distributional biases
present in the datasets. For example, the benchmark dataset
Visual Genome [Krishna et al., 2017] contains 150 distinct
objects, producing possible unique relationships of approx.
22K. Such a large number of relationships are too arduous
to train a model as it is impossible to cover each relation-
ship with sufficient samples [Zellers and Yatskar, 2018]. This
challenge is further complicated by the highly imbalanced
distribution in the relations. It has been observed [Zellers and
Yatskar, 2018; Zhang et al., 2019b; Dornadula et al., 2019;
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Chen et al., 2019] that the distribution of relations of Visual
Genome is highly long-tail and biased: the head relations can
have 10k instances whereas the tail relations have less than
10 each. Thus, a model can readily learn the representation
of head relations but struggles to learn that of tail relations.

Many previous methods focus on the union region of a pair
of objects [Deng et al., 2014; Dai et al., 2017], where only
visual features are considered, but not distributional bias of
relations. However, as mentioned before, due to the highly
imbalanced nature of relations, a relation classifier is hardly
well optimized by such uneven data. Xu et al [2017] devel-
oped a message passing strategy to aid relation recognition
where how to refine the object and relation feature becomes
the central goal. However, its performance still suffers from
the lack of sufficient data required for learning. By counting
the frequency of various relations, Neural Motifs [Zellers and
Yatskar, 2018] discovers that some relations are highly cor-
related with the objects. For instance, the possession relation
“has” always exists between some specific pairs of objects,
such as subject “man” and object “eye”. Similarly based on
the statistic results from a dataset, KER [Chen et al., 2019]
developed a knowledge routing network to preserve the rela-
tion bias into their model. Additionally, other work [Lu et al.,
2016] utilized natural language information as an auxiliary
tool to boost relation classification by mapping the language
prior knowledge to relation phrases. One limitation of these
methods is their reliance on the statistic bias knowledge, with-
out which their results would decline significantly. Similarly,
Gu et al [2019] leveraged ConceptNet [Speer et al., 2017], a
commonsense knowledge graph, to bridge the gap between
visual features and external knowledge by a recurrent neural
network.

Moreover, many recent works discover that a well-
represented contextual feature can significantly benefit rela-
tion recognition. Specifically, Graph R-CNN [Yang et al.,
2018] develops an attentional Graph Convolutional Network
(aGCN), focusing on learning the contextual information be-
tween two objects that are filtered by a Relation Proposal
Network (RePN). Qi et al [2019] proposed two interacting
modules to inject contextual clue to relation feature: a se-
mantic transformer module concentrating on preserving se-
mantic embedded relation features via projecting visual fea-
tures and textual features to a common semantic space; and
a graph self-attention module embedding a joint graph repre-
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sentation by aggregating neighboring nodes’ information. Shi
et al [2019] utilized the attention mechanism to enhance node
and relationship representation and trace the reasoning-flow
in complex scene scenarios.

In this paper we address two critical challenges in scene
graph generation: (1) how to effectively encode contextual
clue into its corresponding object representation; and (2) how
to balance the severely skewed predicate distribution to im-
prove model performance. Specifically, for the first chal-
lenge, we propose a scene-object interaction module aiming
at learning the interplay coefficient between individual ob-
jects and their specific scene context. For instance, the re-
lation triple “man riding bike” is usually associated with the
outdoor scene instead of indoor. Therefore, the outdoor scene
is a key contextual clue to aid us to confidently predict the
“riding” relation once given the objects “man” and “bike”
and the outdoor information. To this end, we treat annotated
objects of each image as the scene label of the image and de-
ploy a weighted multi-label classifier to learn the contextual
scene clue. At the same time, we employ an additive attention
technique to effectively fuse the clue and the objects’ visual
features. For the second challenge, we introduce a knowledge
transfer module to enhance the representation of tail (data-
starved) relations, by transferring the knowledge learned in
head relations to tail relations. In addition, we also introduce
a calibration operation, inspired by the notion of reachability
in reinforcement learning [Savinov et al., 2018], to resize the
head and tail features to enhance their features’ discrimina-
tive ability. In summary, our contributions are threefold:

• We introduce a scene-object interaction module to fuse
objects’ visual feature and the scene contextual clue by
an additive attention mechanism.

• To alleviate the imbalanced distribution of relations, we
propose a head-to-tail knowledge transfer module to pre-
serve rich knowledge learned from the head into the tail.
Moreover, our calibration operation further enhances the
discriminative ability of learned visual features.

• We evaluate our method on the standard scene graph
generation dataset Visual Genome [Krishna et al., 2017]
on three tasks: predicate classification, scene graph clas-
sification and scene graph detection, on which our model
outperforms current state-of-the-art methods.

2 Method
Our overall framework, shown in Figure 1, consists of three
main modules: (1) feature extraction, (2) scene-object inter-
action, and (3) knowledge transfer. Specifically, the scene-
object interaction module aims to combine scene context fea-
tures into object features via an additive attention mechanism,
while the knowledge transfer module focuses on fusing the
knowledge learned in head and tail relations to enhance their
representation.

2.1 Notations
A scene graph is a directed relation network extracted from a
multi-object image. Each edge in a scene graph is represented
by a triple (oi,rij ,oj), consisting of two objects oi, oj and

the relationship predicate rij between them. Additionally, a
scene graph requires to localize each object in the referring
image and we denote the localization of object oi as bi. Thus,
given a set of object labels C and a set of relationship typesR
(including the none relation), a complete scene graph for an
image consists of:

• A set of bounding boxes B = {b1, b2, . . . , bn}, where
bi ∈ R4 denotes the coordinates of the top-left corner
and the bottom-right corner, respectively.

• A set of objects O = {o1, o2, . . . , on}, assigning a class
label oi ∈ C to each bi.

• A set of triples T = {(oi, rij , oj)}, where each oi, oj ∈
O, and rij ∈ R, and that i 6= j.

2.2 Visual and Spatial Feature Extraction
The first step in scene graph generation is to detect objects
in an image. Numerous object detection methods have been
proposed, e.g., Faster R-CNN [Girshick, 2015]. To fairly
compare to other baseline methods, we adopt Faster R-CNN
trained on VGG-16 [Simonyan and Zisserman, 2014] as our
object detection and localization backbone network.

For each detected object oi, we extract two types of fea-
tures: visual features foi ∈ R4096 and spatial features li ∈
R5. Specifically, the visual feature extraction foi follows that
of Neural Motifs [Zellers and Yatskar, 2018]. The spatial
features li is a 5-dimensional vector that encodes top-left
and bottom-right coordinate and the size of object: li =
[xti , yti , xbi , ybi , wi ∗ hi], where wi and hi are the width and
height of the object respectively. Recent works [Zhuang et
al., 2017; Woo et al., 2018] have demonstrated that the rela-
tive position of two objects in an image can significantly en-
hance relation recognition. Thus, we also encode the rela-
tive position into their relation representation as sij ∈ R5.
Concretely, we first convert li to the centralized coordinate as
[xci , yci , wi, hi] and then calculate the relative spatial feature
as sij =

[
xtj
−xci

wi
,
ytj
−yci

hi
,
xbj
−xci

wi
,
ybj
−yci

hi
,
wj ·hj

wi·hi

]
. It is

worth noting that sij is different from sji. To enrich the rep-
resentation of sij , we feed the above raw 5-dimensional vec-
tor into a non-linear layer and convert it to a 256-dimension
vector sij ∈ R256.

As for the union region features fuij of subject si and object
oi, we first generate their union bounding box and follow the
extraction of an object’s visual feature to obtain fuij .

2.3 The Scene-object Interaction Module
For scene graph generation, the correct recognition of re-
lations not only depends on object features, but also takes
important cues from the scene. For example, the scene of
“outdoor” should contribute more to the relation “riding”
while less to “holding”, as riding mostly takes place in the
outdoor, which is not the case for holding.

Many works, such as IMP [Xu et al., 2017] and Neural
Motifs [Zellers and Yatskar, 2018], demonstrate the contex-
tual representation has a conspicuous effect on the relation
recognition. In this work, we propose a scene-object interac-
tion module to encode the global scene contextual informa-
tion into the object representation, which is implemented via
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Figure 1: The high-level architecture of our framework. It consists of the two main parts: the scene-object interaction module and the
knowledge transfer module. The scene-object interaction module refines object features by injecting the global scene interaction information.
The knowledge transfer module transfers the knowledge learned in the head relations to the tail relations and bridges the knowledge gap
between them.

an additive attention module widely used in machine transla-
tion models [Bahdanau et al., 2014; Britz et al., 2017]:

ai = max {0,wg · (foi + fs)} (1)

where foi is the feature of object oi, fs is the global scene fea-
ture of an image, · denotes pointwise product, and wg com-
putes a coefficient of interaction between the object and its
contextualized scene. It is worth mentioning that all objects’
features foi in the same image share a common scene feature
fs. ai is pruned to the interval [0,+∞], and a greater value
of ai corresponds to more interaction with the scene, that is,
the scene feature should contribute more to the object feature
(see (3)). Note that LinkNet [2018] has also proposed to in-
corporate scene features, while we consider the contribution
of a scene to relations via an attention mechanism instead of
a simple concatenation as in LinkNet. wg is implemented by
a fully-connected layer activated via a ReLu function. The
global feature fs is learned by a weighted multi-label classi-
fication loss:

Ls = −
|C|∑
c=1

Wc ∗ BCE(pc, lc) (2)

where Wc is a weight for each class and pre-calculated by
counting the proportion of each object class in the training
set, pc is the probability of each class output from a sigmoid
function, lc is the true target label, and BCE(.) is a binary
cross-entropy function aiming at classifying multi-label im-
ages. With the scene-object interaction, the object feature is
then refined as:

f̃oi = foi + ai ∗ fsi . (3)

From the refined object feature f̃oi , the union region feature
fuij and the transformed relative spatial feature sij , we con-
struct the final representation of each triple (si, rij , oj) as:

f tij =
[
f̃oi × fuij × f̃oj ; sij

]
(4)

where× is the element-wise multiplication following [Zellers
and Yatskar, 2018; Woo et al., 2018], [; ] is the vector concate-
nation operation, and f tij ∈ R4096+256.

2.4 Long-tail Knowledge Transfer
Many previous works [Zellers and Yatskar, 2018; Chen et al.,
2019] have observed that the distribution of relations is signif-
icantly unbalanced and long-tail, that very few relations (the
head) have orders of magnitude more data than the majority
of the relations (the tail). Intuitively, the head relations can
be accurately classified while the less frequent relations are
much more challenging. Therefore, how to transfer knowl-
edge learned in the head relations to the tail is a key point in
our model.

Knowledge Codewords Construction. Inspired by the
great success of knowledge transfer in domain adaptive learn-
ing [Hsu et al., 2017; Xie et al., 2018], our model adopts se-
mantic codewords as the knowledge representation for each
relation class. Our model first learns |R| codewords denoted
as D = {dr}|R|r=1, where |R| is the number of unique relation
types. The codewords should possess two properties: dis-
criminative and semantic. To this end, we add two constraints
to learn D: a near-zero margin for intra-relation groups and a
large margin for inter-relation groups, as follows:

Ld =

|R|∑
r=1

Y dis(f tij ,dr)+ (1−Y)max(0,M −dis(f tij ,dr))

(5)
where M is a constant margin for inter-relation groups; Y =
1 if the relation of f tij is r, otherwise Y = 0; dr is the learn-
able codewords; and dis(, ) is a metric function to calculate
two features’ distance, for which we choose L1 metric. Intu-
itively, Ld forces the same relation group to cluster together
while pushes the inter-relation groups away.



Knowledge Transfer. Relations at the tail of the distribu-
tion are hard to be trained, as there is an insufficient amount
of samples for training. Simply put, the challenge lays on the
fact that feature f tij learned of the tail relationships is not rep-
resentative. Therefore, transferring knowledge learned from
the head of the distribution to the tail is critical for the recog-
nition of those data-starved relationships.

Inspired by the hallucination strategy used in meta-
learning [Zhang et al., 2019c; Zhang et al., 2019a], we
propose a knowledge transfer method by hallucinating the
learned features. Specifically, we first build a coarse classifier
on f tij , that is,

p = softmax(f tij) (6)

where p is a probability distribution over relation types R
implemented by a softmax classification layer. Then, the hal-
lucinated feature is calculated by:

f̃ tij =

|R|∑
r=1

prdr (7)

where dr is the informative knowledge codewords learned by
Equation 5. Similarly, we also apply an additive attention to
combine the original feature f tij with the hallucinated f̃ tij :

atij = max
{
0,wf · (f tij + f̃ tij)

}
(8)

where wf is the parameters of a nonlinear layer to calculate a
coefficient of two features. Finally, we obtain the new relation
features as the below:

f̃ij = f tij + atij f̃
t
ij (9)

Long-tail Features Calibration. Ideally, f̃ij should be
close to f tij so that the fused feature does not change f tij too
much, because the head relations already have sufficient sam-
ples to be trained and the codewords of head relations should
be close to f tij . On the contrary, for the tail relations, the
modification can be significant and arbitrary, consequentially
leading to the confusion with the head relations.

Many previous works have demonstrated that the discrim-
ination of the head and tail class representation plays an es-
sential role in imbalanced data learning [Zhu et al., 2014]. To
avoid this confusion, we calibrate fij to different scales for
different frequency relationships by:

fij = α ·max(p) · f̃ij (10)

where p is the probability vector from Equation 6. Gener-
ally, as for the data-rich relations, max(p) should be a large
value, possibly close to 1 whereas much smaller for the rare
relations, because the frequent relations are trained by more
data and their predicate prediction should be more confident.
Thus, max(p) can be seen as a discriminative calibrating
metric to separate the head and tail features. α is a constant
scalar to resize them. Finally, we deploy a relation classifier
on fij , on which a cross-entropy loss Lrel is imposed.

2.5 Learning
The overall loss function is as follows:

L = Ls + Ldet + Lp + Lrel + εLd (11)

where Ls is a multi-label classification loss defined in Equa-
tion 2 to learn the scene feature, Ldet is the object detection
loss of Faster-RCNN, Ld is the knowledge codewords learn-
ing loss defined in Equation 5, Lp is the coarse relation classi-
fication loss in Equation 6, and Lrel is the final relation clas-
sification loss defined above. ε = 0.01 serves to balance the
term of the codewords loss. Note that the reason why ε is set
to a small number is that Ld is a distance metric usually much
greater than the other terms, but not that Ld is not important.
All parameters in our model are differentiable, so the model
is trained in an end-to-end fashion.

3 Experiment
We evaluate our method on three standard scene graph gen-
eration tasks: predicate classification (PredCls), scene graph
classification (SGCls) and scene graph detection (SGDet). In
PredCls, given ground-truth bounding boxes and objects, the
task is to predict scene graph triples on these objects. In SG-
Cls, given the ground-truth bounding boxes only, the task is
to predict object labels and triples. In SGDet, the task is to
localize bounding boxes, predict object labels and triples.

Specifically, the experiments are conducted to answer the
following research questions:

RQ1: How does our method compare with state-of-the-art
scene graph generation methods?

RQ2: How does each part of our model contribute to the
relation recognition performance on three tasks?

RQ3: How well does our method perform in qualitative
analysis?

3.1 Dataset and Implementation Details
Dataset. We conduct our method on the challenging and
most widely used benchmark, Visual Genome (VG) [Krishna
et al., 2017], which consists of 108,077 images with average
annotations of 38 objects and 22 relations per image. The
experimental settings follow the previous works [Zellers and
Yatskar, 2018; Chen et al., 2019], where we use 150 ob-
ject classes for C and 50 relations for R. Similar to Neural
Motifs [Zellers and Yatskar, 2018], we utilize the statistical
bias information as the extra knowledge to boost the relation
recognition performance and we also report the results with-
out this information.
Implementation Details. α is set as 10, ε at 0.01, and
learning rate starts from 0.001 and decays with the train-
ing processing. Codewords D = {dr}|R|r=1 is initialized by
pre-calculated clusters implemented by K-means. We apply
the Faster R-CNN [Girshick, 2015] based on VGG-16 as
the backbone object detection and localization network. The
number of object proposals is 256, each of which is processed
by RoIAalign [He et al., 2017] pooling to extract object and
union region features. We adopt the Top-K Recall (denoted
as R@K) following previous work [Zellers and Yatskar, 2018;
Chen et al., 2019] as the evaluation metric and report R@20,
R@50 and R@100 on the three tasks.



C
onstraint

Method
SGDet SGCls PredCls

Mean
R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

IMP - 3.4 4.2 - 21.7 24.4 - 44.8 44.8 25.3
Graph-RCNN - 11.4 13.7 - 21.7 31.6 - 54.2 59.2 33.2
Neural Motifs† 20.1 24.8 27.2 30.2 33.5 35.5 52.8 57.7 62.6 38.3
Neural Motifs 21.4 27.2 30.3 32.9 35.8 36.5 58.5 65.2 67.1 41.7
GSM - - - - 38.2 40.4 - 56.6 61.3 -
Mem 7.7 11.4 13.9 23.3 27.8 29.5 42.1 53.2 57.9 29.6
KRE† 20.5 25.2 27.9 29.7 33.9 34.8 53.4 58.7 61.0 38.3
KRE 22.3 27.1 29.8 32.3 36.7 37.4 59.1 65.8 67.6 42.0
Ours† 21.2 26.8 29.3 30.2 34.4 35.9 57.1 63.5 64.5 40.3
Ours 23.6 28.2 31.4 33.6 37.5 38.3 60.3 66.2 68.0 43.1

U
nconstraint

IMP - 22.0 27.4 - 43.4 47.2 - 75.2 83.6 49.8
Neural Motifs 25.7 30.5 35.8 42.6 44.5 47.7 76.3 81.1 88.3 52.5
GSM - - - - 41.4 46.0 - 61.6 68.9 -
KRE 24.6 30.9 35.8 42.8 45.9 49.0 77.1 81.9 88.9 52.9
Ours 26.9 31.4 36.5 43.6 46.2 50.2 77.9 82.5 90.2 53.9

Table 1: Performance (R@K) comparison with the state-of-the-art methods with and without graph constraint on VG. Since some works do
not test on R@20, we only compute the mean on the two tasks of R@50 and R@100. † indicates the method discards the statistical bias prior
information during training.

C
onstraint

Method
SGDet SGCls PredCls Mean

R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

BL 20.4 25.2 27.5 30.3 33.4 34.6 54.8 58.5 62.1 38.5
BL+SO 22.5 26.7 30.1 32.5 35.7 36.8 58.2 64.2 66.8 41.5
BL+SO+KT 23.0 27.6 30.9 33.4 37.1 38.0 59.8 65.8 67.6 42.6
BL+SO+KT+FC 23.6 28.2 31.4 33.6 37.5 38.3 60.3 66.2 68.0 43.1

U
nconstraint

BL 23.3 27.5 32.6 40.2 43.4 45.3 73.3 78.5 86.7 50.0
BL+SO 25.4 29.2 34.3 42.7 44.7 48.1 76.4 80.6 88.0 52.2
BL+SO+KT 26.2 30.7 35.9 43.1 45.0 49.4 77.2 82.1 89.4 53.3
BL+SO+KT+FC 26.9 31.4 36.5 43.6 46.2 50.2 77.9 82.5 90.2 53.9

Table 2: Ablation study results, where we study the effect of the three main modules of our method: scene-object (SO), knowledge transfer
(KT) and feature calibration (FC). BL denotes the baseline without any of the above modules.

3.2 Comparison with State-of-the-art Methods
(RQ1)

We compare our method to the following recent state-of-the-
art methods: KRE [Chen et al., 2019], GSA [Qi et al., 2019],
Mem [Wang et al., 2019], IMP [Xu et al., 2017], and Neu-
ral Motifs [Zellers and Yatskar, 2018]. In addition, we also
compare to Graph-RCNN [Yang et al., 2018], since it also
develops an attention mechanism to learn contextual infor-
mation. As the source code of LinkNet [Woo et al., 2018]
is unavailable and we are unable to reproduce its results, we
do not compare with LinkNet. It is worth noting that Neural
Motifs and KRE use the relation bias as the additional prior
to guide the recognition and we report their results with or
without the bias. Also, we report two sets of results under
different conditions, constraint and unconstraint, to calculate
R@K, following IMP [Xu et al., 2017]

Table 1 shows the results on the three tasks. As some meth-
ods did not report their results on the R@20, the mean result

is calculated according to their reported results. From Ta-
ble 1, we can make the following observations.

(1) Our method is superior to other methods in the majority
of cases even irrespective of the use of the bias information.
Specifically, in terms of mean recall in the constraint setting,
our method surpasses KRE, the best method among the base-
lines, by about 1.1 percentage points when the statistical bias
information is used. A larger improvement of about 2 per-
centage points is achieved when that information is not used.
Also, the similar comparison pattern can be found in Neural
Motifs. Compared with KRE and Neural Motifs, the perfor-
mance difference between with and without statistical bias
information is less in our methods (2.8 percentage points vs
3.7 and 3.4), indicating that our method does not heavily rely
on this bias, and that our model can essentially learn this bias
from the raw data.

(2) GSM shows a great advantage in SGCls task but per-
forms poorly in the task of the predicate classification. As
GSM does not report the results on the scene graph detection



Relation R@50 R@100

w/o KT w KT w/o KT w KT

lying on 12.52 15.31 16.48 17.53
on back of 3.21 4.86 6.70 7.58
to 2.74 5.31 5.38 5.53
mounted on 0.04 3.04 1.84 4.37
walk in 3.24 5.53 5.32 7.28
across 2.57 4.30 5.69 6.39
made of 3.56 3.90 6.69 6.97
playing 4.38 4.53 7.31 7.50
says 0.41 1.46 2.46 2.85
flying in 0.0 0.0 0.0 0.0

Table 3: Predicate classification results of bottom-10 tail relations
with or without the knowledge transfer module on unconstraint
R@50 and R@100.

task, we also do not report their mean recall.
(3) Similarly, our method achieves the best performance in

the unconstraint setting. Due to the space limitation, we do
not report the result when the bias information is discarded.
However similar observations can be made.

3.3 Effectiveness of Each Module (RQ2)
We split our model into three modules: scene-object inter-
action (SO), knowledge transfer (KT) and feature calibration
(FC). The baseline model (BL) denotes the simple model that
only uses the feature generated by Faster-RCNN to recognize
relations. The ablation study results are shown in Table 2,
where we test the performance on the three tasks by adding
each module one at a time. For a fair comparison, all ablated
models are trained by the same number of epochs, set as 40.

We can observe that under both experimental conditions,
constraint and unconstraint, the performance of the baseline is
the worst. The addition of the scene-object interaction mod-
ule SO improves the average performance by 2–3 percentage
points, which confirms the crucial role the global contextual
information plays in relation recognition. When we deploy
the knowledge transfer module KT, a further 1 percentage
point of improvements is gained. Finally, though the achieve-
ments from adding the feature calibration module FC is not
as significant as the other two modules, it still obtains a no-
ticeable lift of about 0.5 percentage point.

Our knowledge transfer module (KT) is specifically de-
signed to solve the problem of data imbalance. To evaluate
its effectiveness, Table 3 shows the predicate classification
(PredCls) results of bottom-10 tail relations whose frequen-
cies are substantially lower than the average frequency of all
relations. The columns “w/o KT” (respectively “w KT”) de-
note the model without (respectively with) knowledge trans-
fer and feature calibration. The superiority of the knowledge
transfer module can be clearly observed. It is worth noting
that since the relation flying in has only five samples in the
entire dataset, all its results are zero. More generally, the
knowledge transfer module on average improves performance
for each relation by 2–3 percentage points.

Briefly, we can draw two conclusions from the ablation
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Figure 2: Qualitative results of two images based on two models: the
baseline and the full model. Solid lines represent correct relations
detected by both models. Dashed lines represent wrong relations de-
tected by the baseline model. Dotted lines represent correct relations
detected by the full model that the baseline model missed.

study. (1) The three modules all positively contribute to
the relation recognition performance, and their combination
achieves the best results. (2) The scene-object interaction
module is the most effective of the three, as it offers more
contextual clues and knowledge, and the other two modules
rely on the knowledge learned from the scene context.

3.4 Qualitative Results (RQ3)

Figure 2 visualizes some scene graph generation results of
two models: the baseline model and the full model. We
can observe that though the baseline model is able to capture
many relations, it does get confused on some cases. Taking
the second image as an example, the baseline model predicts
that the keyboard is under the screen but in fact is under the
table. The possible reason is that the baseline model only
considers the visual and spatial feature of the screen and key-
board objects but does not consider the global scene feature.

4 Conclusion

In this work, we investigate the long-tail problem existing in
scene graph generation. To address this issue, we propose
an end-to-end framework consisting of three modules: scene-
object interaction, knowledge transfer and feature calibration,
each of which has its specific function. The extensive ex-
perimental results show that our method significantly outper-
forms other state-of-the-art methods on all standard evalua-
tion metrics. We observe that there still exists a large per-
formance gap between the scene graph detection task and the
predicate classification task. In future, we will focus on ob-
ject label refinement, which is a promising way to improve
scene graph generation performance.
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