
Two Decades of Web Application Testing—A Survey of
Recent Advances

Yuan-Fang Li∗,1, Paramjit K. Das2, David L. Dowe3

Clayton School of Information Technology
Faculty of Information Technology, Monash University

Clayton, VIC, 3800, Australia

Abstract

Since its inception of just over two decades ago, the World Wide Web has be-
come a truly ubiquitous and transformative force in our life, with millions of
Web applications serving billions of Web pages daily. Through a number of evo-
lutions, Web applications have become interactive, dynamic and asynchronous.
The Web’s ubiquity and our reliance on it have made it imperative to ensure the
quality, security and correctness of Web applications. Testing is a widely-used
technique for validating Web applications. It is also a long-standing, active and
diverse research area. In this paper, we present a broad survey of recent Web
testing advances and discuss their goals, targets, techniques employed, input-
s/outputs and stopping criteria.

Key words: Software testing, Web applications, World Wide Web, Web
testing, Survey

1. Introduction

Software testing [1] has been widely used in the industry as a quality as-
surance technique for the various artifacts in a software project, including the
specification, the design, and source code. As software becomes more impor-
tant and complex, defects in software can have a significant impact to users and
vendors. Therefore, the importance of planning, especially planning through
testing, cannot be underestimated [1]. In fact, software testing is such a critical

∗Corresponding author
Email addresses: yuanfang.li@monash.edu (Yuan-Fang Li), paramjit.das@monash.edu

(Paramjit K. Das), david.dowe@monash.edu (David L. Dowe)
1Yuan-Fang Li is a Lecturer at Clayton School of Information Technology, Faculty of

Information Technology, Monash University.
2Paramjit K. Das is a PhD student at Clayton School of Information Technology, Faculty

of Information Technology, Monash University.
3David L. Dowe is an Associate Professor at Clayton School of Information Technology,

Faculty of Information Technology, Monash University.

Preprint submitted to Elsevier February 20, 2014

part of the entire process of producing high-quality software that an industry
may devote as much as 40% of its time on testing to assure the quality of the
software produced.

In software testing, a suite of test cases is designed to test the overall func-
tionality of the software—whether it conforms to the specification document or
exposes faults in the software (e.g., functionality or security faults). However,
contrary to the preconceived notion that software testing is used to demonstrate
the absence of errors, testing is usually the process of finding as many errors as
possible and thus improving assurance of the reliability and the quality of the
software [1]. This is because, in order to demonstrate the absence of errors in
software, we would have to test for all possible permutations for a given set of
inputs. However, realistically, it is not possible to test for all the permutations
of a given set of input(s) for a given program, even for a trivial program. For
any non-trivial software systems, such an exhaustive testing approach is essen-
tially technologically and economically infeasible [1]. The main objectives of
any testing technique (or test suite) can be summarised as:

• Testing is carried out mainly to demonstrate the presence of errors that
exist during a program execution.

• A good testing technique will have a higher chance of discovering an error.

• A successful test case should discover a new fault or a regression fault.

Ever since the creation of the World Wide Web in the early 1990s [2], there
has been a tremendous increase in the usage of Web applications in our daily
lives. The idea behind the World Wide Web was possibly envisioned by C.
S. Wallace as early as 1966 [3, pp 244-245], where he envisioned that a central
computing system (or the server), or a bank of computers, could be used to carry
out various computing tasks, such as paying bills, ordering goods, carrying out
engineering tasks, etc., for a large number of users. In these instances, the
time required would be shared equally amongst all users, which would make the
process economically feasible. This concept was appropriately labeled “Time-
Sharing”, since the time would be shared amongst all users.

A Web application is a system which typically is composed of a database (or
the back-end) and Web pages (the front-end), with which users interact over a
network using a browser. A Web application can be of two types - static, in
which the contents of the Web page do not change regardless of the user input;
and dynamic, in which the contents of the Web page may change depending on
the user input, user interactions, sequences of user interactions, etc.

The profound transformative impact the Web and Web applications have
brought about on our society has long been acknowledged. Somewhat surpris-
ingly, however, there seems to be very limited research that has been done in
surveying the different recent advancements made in the field of Web applica-
tion testing over the past 20 years. To the best of our knowledge, the only other
surveys in this field consists of an early review by Di Lucca and Fasolino [4]
on general approaches to Web application testing, and a survey by Alalfi et

2

al. [5] focussed on the modeling aspects of Web application testing. Therefore,
this survey paper provides a much needed source of detailed information on the
progress made in and the current state of Web application testing.

Compared to traditional desktop applications, Web applications are unique
in a number of ways, and such uniqueness presents new challenges for their
quality assurance and testing.

• Firstly, Web applications are typically multilingual. A Web application
usually consists of a server-side backend and a client-facing frontend, and
these two components are usually implemented in different programming
languages. Moreover, the frontend is also typically implemented with a
mix of markup, presentation and programming languages such as HTML,
Cascading Style Sheets (CSS) and JavaScript. The presence of multiple
languages in a Web application poses additional challenges for fully auto-
mated continuous integration (CI) practices, as test drivers for different
languages need to be integrated into the CI process and managed coher-
ently.

• Secondly, the operating environment of typical Web applications is much
more open than that of a desktop application. Such a wide visibility makes
such applications susceptible to various attacks, such as the distributed
denial-of-service (DDOS) attacks. Moreover, the open environment makes
it more difficult to predict and simulate realistic workload. Levels of stan-
dards compliance and differences in implementation also add to the com-
plexity of delivering coherent user experiences across browsers.

• Thirdly, a desktop application is usually used by a single user at a time,
whereas a Web application typically supports multiple users. The effective
management of resources (HTTP connections, database connections, files,
threads, etc.) is crucial to the security, scalability, usability and function-
ality of a Web application. The multi-threaded nature of Web applications
also makes it more difficult to detect and reproduce resource contention
issues.

• Last but not least, a multitude of Web application development tech-
nologies and frameworks are being proposed, actively maintained and fast
evolving. Such constant evolution requires testing techniques to stay cur-
rent.

The rest of this paper is organised as follows. We begin in Section 2 by
motivating the importance of Web application testing and then outlining major
techniques covered in subsequent sections. In Section 3 we cover graph and
model based testing techniques, including finite state machine-based techniques.
In Section 4, we briefly discuss mutation testing techniques. In Section 5, we
present search based software engineering techniques, where testing problems
are treated as optimisation problems. Section 6 is devoted to the discussion of
some popular scanning and crawling techniques and present their application to
security testing of Web applications. In Section 7, we present random testing,

3

with the use of assertions as the primary oracle, and describe examples of how
random testing can be applied to Web services. Fuzz testing is a form of random
testing that generates invalid inputs with an aim of discovering defects that are
severe and hard to detect. Section 8 is devoted to fuzz testing. We introduce
some white-box fuzz testing techniques that makes use of symbolic execution
techniques introduced in Section 9. A black-box fuzz testing framework for
JavaScript [6] will also be covered. Concolic testing, a technique that combines
symbolic and concrete random execution to improve testing effectiveness, is
covered in Section 9. We also show how they can be applied to testing dynamic
PHP [7] and JavaScript applications using a number of examples. In Section 10,
we discuss user session-based techniques and some of the ways to minimize the
number of user sessions during testing. Lastly, in Section 11, we provide a
summary of the different testing techniques and lay out future directions in
which Web application testing research can proceed.

2. Motivation, Challenges and Overview of Techniques

Many aspects of a Web application may be subject to testing, which has
been a major challenge due to their heterogeneous nature. Web applications
usually comprise different components that are typically implemented in differ-
ent programming languages, application development frameworks and encoding
standards. Additionally, as we stated above, compatibility testing has also be-
come a major challenge with the increased availability of a number of popular
browsers. Large Web-based software systems can be quite complicated and con-
tain thousands to millions of lines of code, many interactions among objects,
and involve significant interaction with users. In addition, changing user profiles
and frequent small maintenance changes complicate automated testing. In the
following 2 subsections we motivate the importance of testing with two chal-
lenges facing Web applications: interoperability and security. In Section 2.4, we
then provide a quick overview of the major testing techniques which are also
summarised in a number of tables for easy reference.

2.1. Interoperability
According to the World Wide Web Consortium (W3C),4 the main interna-

tional standards organisation for the World Wide Web (WWW), testing in Web
applications is very significant. In order for the Web to reach its full potential,
it is paramount that all the basic Web technologies are compatible with each
other and allow any hardware and software used to access the Web to work
together.5 This goal is referred to as “Web interoperability” by the W3C. Two
different implementations of a technology are compatible if they both conform
to the same specifications. Conformance to specifications is a necessary but

4http://www.w3.org/Consortium/. This site was last accessed on January 31, 2013.
5http://www.w3.org/QA/WG/2005/01/test-faq#why. This site was last accessed on Jan-

uary 31, 2013

4

insufficient condition for interoperability; the specifications must also promote
interoperability (by clearly defining behaviors and protocols). Therefore, in the
case of Web applications and Web technologies, testing must be done to ensure
that the overall functionality of a Web application conforms to the specifica-
tion document(s) in addition to ensuring compatibility across different browsers
(e.g., Chrome, Firefox, Internet Explorer and Safari) and platforms (e.g., differ-
ent operating systems such as, Windows, Linux, Mac OS X, Android and iOS).
Such an articulate version of testing will also help uncover contradictions, lack
of clarity, ambiguity, and omissions in specification documents.

2.2. Security
Web applications are used by virtually all organisations in all sectors, in-

cluding education, health care, consumer business, banking and manufacturing,
among others. Thus, it is important to ensure that the Web applications de-
veloped are properly tested due to the importance and the sensitivity of the
information stored in databases of such Web applications [8, 9]. Thus, the secu-
rity of Web application becomes an issue of critical importance. This is because
Web applications can be accessed by a large number of anonymous users and
as a result, the information can be easily misused, possibly resulting in huge
damages to the organisation and its clients.

Although it is important that Web applications are dependable, recent re-
ports have indicated that in practice they are usually not. For example, one
study of Web application integrity found that 29 of 40 leading e-commerce sites
and 28 of 41 government sites exhibit some type of failure when exercised by a
“first-time user” [10]. Similarly, another study by Kals et al. [8] showed that be-
tween 4 and 7 percent of randomly chosen Web site forms (from a list of 21,627
forms) were vulnerable to different categories of Cross-site scripting (XSS) and
SQL injection attacks (more specifically, 6.63% to SQL injection, 4.30% to Sim-
ple XSS injection, 5.60% to Encoded XSS injection, 5.52% to Form-Redirecting
XSS injection, see Section 6 for more details). Additionally, there have been
recent cases in some high profile corporations, where lack of security in Web ap-
plications resulted in hackers gaining unauthorised access to the organisation’s
network and privileged information. For instance, the PlayStation Network of
Sony Computer Entertainment was attacked in April 2011, resulting in hackers
gaining access to the e-mail addresses, usernames, passwords, online user IDs
and credit card details of nearly 70 million customers who were registered with
Sony’s PlayStation Network.6. This large-scale breach of the security system of
the PlayStation Network is believed to have cost Sony as much as $24 billion,7
in addition to dealing a major blow to Sony’s reputation worldwide.

6http://www.wired.com/gamelife/2011/04/playStation-network-hacked/. This site was
last accessed on January 31, 2013.

7http://www.businessinsider.com/playStation-network-breach-could-cost-sony-24-billion-2011-4.
This site was last accessed on January 31, 2013.

5

2.3. Dynamics
Many non-trivial Web applications are divided into a server-side backend

and a client-side frontend. The backend is responsible for data processing and
persistence, and it often implements complex business logics. The frontend,
traditionally concerned about the presentation of data, is becoming more and
more sophisticated and rich in features. Dynamics are present in Web applica-
tions in several ways, and they bring unique challenges to the testing of Web
applications.

Firstly, the Web applications themselves may be dynamic in nature. The so-
called Web 2.0 [11] applications are characterised by their abilities to support
not only static data presentation, but also interactive user participation and
content creation. In these interactive Web applications, page contents can be
updated by client-side scripts without a page refresh, made possible by languages
and technologies such as JavaScript [6] and AJAX (Asynchronous JavaScript
and XML) [12]. Such dynamic content generation mechanisms make capture-
replay style of testing more difficult [13]. For example, the test driver needs to
understand when page contents are ready to consult the test oracle for validating
test results. The increasing prevalence of single-page Web applications8 further
amplifies the importance of dynamic Web application testing.

Secondly, predominantWeb programming languages, including JavaScript [6],
PHP [7], Python [14] and Ruby [15], are dynamic in nature. For example,
JavaScript is the lingua franca for client-side scripting in Web applications. It
is a powerful language with many advanced features, including dynamic typing
and evaluation, functions as objects, and various forms of delegation. These fea-
tures make it very challenging to thoroughly test a JavaScript application. For
instance, a JavaScript application may accept many kinds of inputs, including
responses from the server and user input from from fields, which are structured
as strings [16]. Therefore, a JavaScript testing tool must be able to discern the
different kinds of inputs and handle them accordingly.

2.4. Overview of Techniques
In this survey we broadly categorize Web application testing techniques into

a number of groups, including those based on graphs and models, scanning and
crawling techniques, search-based techniques, mutation testing, concolic testing,
user session-based testing and random testing.

Each of these groups of testing techniques can be described along a number of
dimensions, including a main purpose (to determine which technique should be
used given the basic testing objectives), evaluation criteria, inputs and outputs,
and criteria for stopping the test. For easy reference, these dimensions are
highlighted in a number of tables in this subsection.

Table 1 summarizes the main purpose of these testing techniques. Table 2
highlights the different testing techniques, evaluation criteria on the basis of

8http://itsnat.sourceforge.net/php/spim/spi_manifesto_en.php. This site was last
accessed on November 15, 2013.

6

cost-effectiveness, density of faults detected, and coverage. Table 3 describes
the inputs, outputs and stopping conditions for each testing technique.

The graph and model based testing approach essentially creates a model of
a Web application. Test cases are then derived on the basis of the model con-
structed. The test cases are generated according to either the all-statement
(all statements must be covered/tested) or all-path (all paths/branches must be
covered) coverage criterion. The graph and model based approach include finite
state machine-based testing, where a finite state machine depicting the model of
the system is first constructed, from which test cases are then derived. A variant
of finite state machines is the probable finite state machines, where transitions
are associated with probabilities (this is similar to the probabilistic finite state
machines discussed in [17, Section 7.1], where the shortest length message can
be inferred from the data).

Mutation testing is aimed at detecting the most common errors that typically
exist in a Web site or a Web application. In this form of testing, some lines of
source code are randomly changed in a program to check whether the test case
can detect the change. For example, the destination address on the client side,
in an HTML form, may be replaced with an invalid address, or invalid files may
be included in the server side of the program. If the test suite can detect the
errors (i.e., testing has been properly conducted), then an error message will be
displayed. This form of testing is mainly intended to ensure that testing has
been done properly and also to cover additional faults which may exist in a Web
site, and for which testing has not been performed.

Search-based software testing aims at testing a majority of the branches in
a Web application. The main aim of this form of testing is to cover as many
branches as possible and thus improve testing coverage. Usually, some heuristic
is used to ensure that a large number of branches are tested and thus testing is
sufficiently thorough.

Scanning and crawling techniques are mainly intended to check the security
of Web applications. In such techniques, a Web application is injected with
unsanitised input, which may result in malicious modifications of the database
if not detected. The main idea is to detect any such vulnerabilities that a
Web application may have. This is a very important form of testing, because,
as discussed earlier, many Web site designers do not pay enough attention to
security threats, thus making their Web site vulnerable to potential intrusion.
This form of testing aims to improve the overall security of a Web site.

In random testing, random inputs are passed to a Web application, mainly
to check whether the Web application functions as expected and can handle
invalid inputs. A special case of random testing is fuzz testing, where boundary
values are chosen as inputs to test that the Web site performs appropriately
when rare input combinations are passed as input.

The major aim of concolic testing (concrete, symbolic testing) is also to cover
as many branches as possible in a program. In this form of testing, random
inputs are passed to a Web application to discover additional and alternative
paths which are taken by the Web application as a result of different inputs.
The additional paths are stored in a queue in the form of constraints, which are

7

then symbolically solved by a constraint solver. The process continues until the
desired branch coverage is achieved.

In user session-based testing, testing is done by keeping track of user ses-
sions. In this case, a list of interactions performed by a user is collected in the
form of URLs and name-value pairs of different attributes, which are then used
for testing. Due to the large number of user sessions that can result when a user
interacts with a Web site, there are several techniques for reducing the number
of sessions to test, such as lattice construction, batch test suite reduction, in-
cremental reduced test suite update, and test case reduction through examining
URL traces.

One of the aspects of Web application testing that we do not cover in this
survey is usability testing [18]. Usability testing is primarily a black-box testing
technique. The major aim is to test how users use an application and discover
errors and/or areas of improvement (intended to make the product more in-
tuitive and user-friendly). Usability testing generally involves measuring how
well users respond in four main areas while using the application: efficiency,
accuracy, recall, and emotional response. The results obtained from the first
test is usually treated as a baseline against which all subsequent tests are then
compared to indicate improvement. Generally speaking, in the case of Web
applications, such usability testing would involve the testing of, e.g., (1) the
ease of using the application, (2) the layout and appearance of the Web applica-
tion on different devices such as desktops, laptops, and mobile systems, and (3)
whether different messages displayed during the application are sufficient and
appropriate.

8

Table 1: The main purpose of each group of testing techniques and whether or not the
techniques are automated.

Testing technique Ref. Automated Main purpose

Model and Graph
Based Testing

[19, 20, 21] × Create a model of the application
to test

Mutation Testing [22] X Find out rare and most common
errors by changing the lines in the
source code

Search-based Testing [23] X To test as many branches as possi-
ble in an application via the use of
heuristics to guide the search

Scanning and Crawl-
ing

[8, 13, 24, 25] X Detect faults in Web applications
via injection of unsanitised in-
puts and invalid SQL injections in
user forms, and browsing through
a Web application systematically
and automatically

[26] × Detects navigation and page errors
by systematically exploring pages
and filling out form

Random Testing [27, 28, 29, 30] X Detect errors using a combination
of random input values and asser-
tions

Fuzz Testing [31, 32, 33] X Test the application by passing in
random, boundary or invalid in-
puts

Concolic Testing [34, 27, 35, 16] X To test as many branches as pos-
sible by venturing down different
branches through the combination
of concrete and symbolic execution

User Session Based
Testing

[36, 9] X Test the Web application by col-
lecting a list of user sessions and
replaying them

[37, 38] X Reduce the test suite size in User
session-based testing

9

Table 2: The main evaluation methods of each of the testing techniques. The evaluation
methods are indicated by a ‘X’ for each technique.

Testing technique
Ref. Evaluation methods

Cost-
effectiveness

Density of faults
detected

Coverage

Model and Graph
Based Testing

[19, 20, 21] X X

Mutation Testing [22] X X

Search-Based Test-
ing

[23] X X X

Scanning and Crawl-
ing

[13, 8] X

[24] X X

[25] X X

[26]

Random Testing [27, 28] X X X

[29] X X

[30] X X

Fuzz Testing [31, 32] X X

[33] X X

Concolic Testing [34, 16] X X X

[27] X X

[35] X X

User Session-based
Testing

[36, 37, 38] X X X

[9] X X

10

T
ab

le
3:

T
he

m
ai
n
in
pu

ts
,
ou

tp
ut
s,

an
d
st
op

pi
ng

co
nd

it
io
ns

fo
r

ea
ch

te
st
in
g
te
ch
ni
qu

e.

T
es

ti
n
g

te
ch

n
iq

u
e

R
ef

.
In

p
u
ts

O
u
tp

u
ts

C
on

d
it

io
n

to
st

op
te

st
-

in
g

M
od
el

an
d

G
ra
ph

B
as
ed

T
es
ti
ng

[1
9,

21
]

M
od

el
of

th
e
ap

pl
ic
at
io
n

R
eg
ul
ar

ex
pr
es
si
on

s
fr
om

w
hi
ch

te
st

ca
se
s
ca
n
be

cr
e-

at
ed

D
ep

en
ds

(e
.g
.,

al
l
pa

th
/a
ll

st
at
em

en
t
cr
it
er
ia
)

[2
0]

Lo
w
er

le
ve
l
fin

it
e-
st
at
e
m
a-

ch
in
e
(F

SM
)
of

th
e
ap

pl
ic
a-

ti
on

A
n

ap
pl
ic
at
io
n-
le
ve
l

F
SM

fr
om

w
hi
ch

te
st

ca
se
sc

an
be

ge
ne
ra
te
d

D
ep

en
ds

(e
.g
.,

al
l
pa

th
/a
ll

st
at
em

en
t
cr
it
er
ia
)

M
ut
at
io
n

T
es
ti
ng

[2
2]

A
pr
og
ra
m

an
d

m
ut
at
io
n

op
er
at
or
s

M
ut
at
ed

pr
og
ra
m

cr
ea
te
d

as
a
re
su
lt

of
ap

pl
yi
ng

th
e

m
ut
at
io
n
op

er
at
or
s

R
eq
ui
re
d

m
ut
at
io
n

op
er
a-

to
rs

ar
e
ap

pl
ie
d

Se
ar
ch
-b
as
ed

T
es
ti
ng

[2
3]

M
ut
at
io
n
of

ap
pl
ic
at
io
n
in
-

pu
ts

as
ge
ne
ra
te
d
by

di
ffe

r-
en
t
he
ur
is
ti
cs

su
ch

as
hi
ll

cl
im

bi
ng

,s
im

ul
at
ed

an
ne
al
-

in
g

an
d

ev
ol
ut
io
na

ry
al
go
-

ri
th
m
s

A
te
st

su
it
e
w
it
h
th
e
ai
m

of
m
ax

im
is
e
br
an

ch
co
ve
ra
ge

A
pr
e-
de
te
rm

in
ed
,

fix
ed

nu
m
be

r
of

te
st

ex
ec
ut
io
ns

Sc
an

ni
ng

an
d

C
ra
w
lin

g
[2
4,

13
,8

,2
5]

U
ns
an

it
is
ed

us
er

in
pu

ts
to

cr
as
h

th
e
W
eb

ap
pl
ic
at
io
n

(e
.g
.,
th
e
da

ta
ba

se
or

fo
rc
e

th
e

us
er

to
en
te
r

un
sa
fe

W
eb

si
te
s)

T
yp

e
of

de
fe
ct
s
an

d
nu

m
be

r
of

de
fe
ct
s

U
nt
il

al
l
th
e

fo
rm

s
fo
r

a
gi
ve
n
W
eb

ap
pl
ic
at
io
n
is
in
-

je
ct
ed

w
it
h

di
ffe

re
nt

fo
rm

s
of

un
sa
ni
ti
se
d
us
er

in
pu

t

11

T
ab

le
3:

T
he

m
ai
n
in
pu

ts
,
ou

tp
ut
s,

an
d
st
op

pi
ng

co
nd

it
io
ns

fo
r

ea
ch

te
st
in
g
te
ch
ni
qu

e.

T
es

ti
n
g

te
ch

n
iq

u
e

R
ef

.
In

p
u
ts

O
u
tp

u
ts

C
on

d
it

io
n

to
st

op
te

st
-

in
g

[2
6]

A
st
ar
ti
ng

U
R
L

T
yp

e
of

de
fe
ct
s
an

d
nu

m
be

r
of

de
fe
ct
s

A
m
ax

im
um

de
pt
h
of

ex
pl
o-

ra
ti
on

is
re
ac
he
d

R
an

do
m

T
es
ti
ng

[2
7]

W
S-
C
D
L

W
eb

se
rv
ic
e

ch
or
eo
gr
ap

hy
sp
ec
ifi
ca
ti
on

s
T
es
t
or
ac
le
s
(a

te
st

su
it
e
in
-

cl
ud

in
g
as
se
rt
io
ns
)

T
he

st
op

in
st
ru
m
en
t

in
th
e

co
nt
ro
l
flo

w
gr
ap

h
is

re
ac
he
d

[2
8]

St
at
e

m
ac
hi
ne

m
od

el
s

of
W

SD
L
W
eb

se
rv
ic
e
de
sc
ri
p-

ti
on

s

A
te
st

su
it
e,

an
d
it
s
ex
ec
u-

ti
on

an
d
vi
su
al
is
at
io
n

D
ep

en
ds

(e
.g
.,

al
l
pa

th
/a
ll

st
at
em

en
t
cr
it
er
ia
)

[2
9]

A
Ja
va
Sc
ri
pt

pr
og
ra
m

A
se
t
of

te
st

ca
se
s
an

d
th
ei
r

ex
ec
ut
io
n
re
su
lt
s

A
pr
e-
de
te
rm

in
ed
,

fix
ed

nu
m
be

r
of

te
st

ca
se
s

[3
0]

A
Ja
va
Sc
ri
pt

pr
og
ra
m

T
es
t
or
ac
le
s
in

th
e
fo
rm

of
co
nt
ra
ct
s
an

d
ra
nd

om
te
st

ca
se
s
ba

se
d
on

co
nt
ra
ct
s

A
ll
co
nt
ra
ct
s
ex
ha

us
te
d

Fu
zz

T
es
ti
ng

[3
1]

R
an

do
m

us
er

in
pu

ts
w
hi
ch

te
st

ra
re

or
un

lik
el
y
sy
st
em

be
ha

vi
or

(e
.g
.,

va
lu
es

ne
ar

th
e
bo

un
da

ri
es
)

T
es
t
ca
se
s
w
it
h
or
ac
le
s

D
ep

en
ds

(e
.g
.,

al
l
pa

th
/a
ll

st
at
em

en
t
cr
it
er
ia
)

[3
2]

A
Ja
va
Sc
ri
pt

pr
og
ra
m

an
d

a
be

ni
gn

in
pu

t
A

te
st

su
it
e
an

d
th
e
id
en
-

ti
fie
d

po
te
nt
ia
l

cl
ie
nt
-s
id
e

va
lid

at
io
n
vu

ln
er
ab

ili
ti
es

A
ll
id
en
ti
fie
d
da

ta
flo

w
s
ex
-

ha
us
te
d

12

T
ab

le
3:

T
he

m
ai
n
in
pu

ts
,
ou

tp
ut
s,

an
d
st
op

pi
ng

co
nd

it
io
ns

fo
r

ea
ch

te
st
in
g
te
ch
ni
qu

e.

T
es

ti
n
g

te
ch

n
iq

u
e

R
ef

.
In

p
u
ts

O
u
tp

u
ts

C
on

d
it

io
n

to
st

op
te

st
-

in
g

[3
3]

A
P
ro
gr
am

,a
gr
am

m
ar

an
d

an
in
it
ia
li
np

ut
A

te
st

su
it
e
an

d
th
e
id
en
ti
-

fie
d
de
fe
ct
s

A
ll

ge
ne
ra
te
d

in
pu

ts
ex
-

ha
us
te
d

C
on

co
lic

T
es
ti
ng

[3
4,

27
,3

5,
16
]

C
on

cr
et
e
in
pu

ts
fr
om

sy
m
-

bo
lic
al
ly

so
lv
ed

pr
ev
io
us

it
-

er
at
io
n,

st
ar
t
w
it
h
ra
nd

om
in
it
ia
li
np

ut

P
at
h
co
ns
tr
ai
nt
s
at

ea
ch

it
-

er
at
io
n

A
ll
co
ns
tr
ai
nt
s
ex
ha

us
te
d

U
se
r
Se
ss
io
n-

ba
se
d
T
es
ti
ng

[3
6,

38
,9

]
U
se
r
se
ss
io
ns

A
co
m
bi
na

ti
on

of
U
R
L
an

d
th
e
pa

ra
m
et
er
s
to

be
pa

ss
ed

to
th
e
se
rv
er

D
ep

en
ds

(e
.g
.,

ce
rt
ai
n

se
-

le
ct
ed

us
er

se
ss
io
ns

ha
ve

be
en

te
st
ed

or
re
as
on

ab
le

co
ve
ra
ge

ha
s
be

en
ac
hi
ev
ed
)

[3
7]

U
se
r
se
ss
io
ns

A
n
up

da
te
d
co
nc
ep
t
la
tt
ic
e

an
d
a
up

da
te
d
te
st

su
it
e

C
on

ti
nu

e
ti
ll

al
l
th
e

us
er

se
ss
io
ns

to
be

te
st
ed

ha
ve

be
en

ex
ha

us
te
d
an

d
th
e
te
st

su
it
e
an

d
th
e
la
tt
ic
e
ca
nn

ot
be

m
od

ifi
ed

an
ym

or
e

13

3. Graph- and Model-based White-box Testing Techniques

These testing techniques starts with constructing a graph or a state machine
model of the Web application and then generate test cases from these models.

3.1. Graph-Based Testing
The most popular white-box graph based testing approach is the one pro-

posed by Ricca and Tonella [19], which creates a graph-like model in which nodes
in the graph represent Web objects such as Web pages, forms and frames, and
edges represent the relationship between these objects (e.g., submit, include,
split and link).

To generate test requirements and test cases, a regular expression to match
the graph is generated. For example, Figure 1 depicts the graph for a sample
Web application. The regular expression “e1e2 + e1e3∗ + e4e5∗”, where a “*”
indicates that a transition may be visited any number of times and a “+” indi-
cates choice, can then be used to generate test requirements by identifying the
set of linearly independent paths that comprise it, and applying heuristics to
minimize the number of requirements generated. A linearly independent path
is defined as the path in which at least one edge has not been traversed earlier
while constructing the paths and all the linearly independent paths together
test all the edges of the graph at least once.

3.1.1 WB-1: Complete Test Requirements with Ad Hoc
Selection of Inputs

Our first white-box technique attempts to match the
methodology presented in [30]. We generate test require-
ments from path expressions following the procedure just
outlined, but we make the following assumptions about the
process where [30] omits details: 1) we test only linearly
independent paths, 2) we exercise forms that are included
in multiple Web pages, but perform the same functionality
independent of context (e.g, provide search capability) from
only one source, and 3) we ignore circular links represent-
ing edges to the same page (included just to facilitate
navigation within a page). After test requirements are
generated from path expressions, we fill in the relevant
forms so that the test cases can be executed.

3.1.2 WB-2: Complete Test Requirements with
Formalized Selection of Inputs

Our second white-box implementation relaxes some of the
assumptions established for WB-1 and incorporates a more
elaborate approach for input value selection. In contrast to
WB-1, WB-2 uses boundary values as inputs, and utilizes a
strategy for combining inputs inspired by the “each
condition/all conditions” strategy [4]. The test suite that
results consists of a set of test cases in which for each form,
each input variable is considered in isolation (all the other
variables are set to the empty string), plus one test case in
which all variables have values assigned. For the test cases
that consider just one variable, the values are selected based
on the boundary conditions for such variables. For the test
case that includes all variables at once, one random
combination of values is selected. The objective behind this
strategy is to add formalism to the process of inputting data
into the forms, as recommended in one of the examples in
[30] and presented in [8].

3.2 User-Session-Based Techniques

One limiting factor in the use of white box Web application
testing techniques such as Ricca and Tonella’s is the cost of
finding inputs that exercise the system as desired. The
selection of such inputs is complex and must be accom-
plished manually [30]. User-session-based techniques can
help with this problem by transparently collecting user
interactions (clients’ requests) in the form of URLs and
name-value pairs, and then applying strategies to these to
generate test cases.

Because normal Web application operation consists of
receiving and processing requests and because a Web
application runs in just one environment which the
organization performing the testing controls, the collection
of client request information can be accomplished easily.
For example, with minimal configuration changes, the
Apache Web server can log all received get-requests [1]. A
slightly more powerful but less transparent alternative that
can capture all name-value pairs involves adding snippets
of javascript to the delivered Webpages so that all requests
invoke a server-side logging script. Utilizing Java servlet
filters is yet another alternative that enables the dynamic
interception of requests and responses at the server side.
Given a particular collection mechanism, user-session-
based techniques require little additional infrastructure to
collect the required data, limiting the impact on Web
application performance. Another advantage of collecting
just the requests is that at that higher abstraction level, some
of the complexities introduced by heterogeneous Web
application architectures are hidden. This lessens the
dependencies of user-session-based techniques on changes
in Web application components.

Given a set of URL and name-value pairs collected from
user sessions, there are many techniques by which test cases

190 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

Fig. 2. Simplified model for an e-commerce application.
Figure 1: The graph model of a sample Online Book Shopping Web application from [19,
Figure 2].

The test cases are sequences of Web pages to be visited together with their
corresponding values (generated from the path expressions). There are two
versions [19] of this implementation:

14

• Complete test requirements with ad hoc selection of inputs: This white-
box technique attempts to match the methodology presented in [19]. Test
cases are generated from the path regular expressions and the following
assumptions are made: (1) only linearly independent paths are tested, (2)
we exercise forms that are included in multiple Web pages, but perform the
same functionality independent of context (e.g, provide search capability)
from only one source, and (3) ignore circular paths which link back to the
starting page (included just to facilitate navigation within a page). Then
the forms are filled and test cases are generated.

• Complete test requirements with formalised selection of inputs: This tech-
nique uses boundary values as inputs, and utilizes a strategy for combining
inputs inspired by the “each condition/all conditions” strategy [39]. The
test suite contains test cases such that the test cases for each form com-
prise tests of empty values for all variables and one additional test case
in which all the variables have values assigned. For the test cases that
consider just one variable, the values are selected based on the boundary
conditions for such variables. For the test case that includes all variables
at once, one random combination of values is selected. The objective be-
hind this strategy is to add formalism to the process of inputting data into
the forms, as recommended in one of the examples in [19].

One of the main limitations of this approach by Ricca and Tonella [19] is
that the construction of the graph has to be done manually. Therefore it is
very difficult to automate the process. In addition, only linearly independent
paths are tested. The advantage of this approach seems to be that there is not
much overhead involved in obtaining the regular expressions after a model of the
system is constructed (manually). Moreover, the testing involves inputs chosen
randomly, thus making the process simple to implement.

3.2. Finite State Machine Testing
A finite state machine usually has a finite set of states S, a finite set of

inputs I, a finite set of outputs O, a transition function T which determines
the transition from the current state s1 to a next state s2, depending on the
input i1, and an output function O, which determines the output produced by
a transition.

A few methods have been proposed for deriving test cases for software sys-
tems from finite state machines (FSM) [40]. Finite state machine-based ap-
proaches have also been applied to Web testing because a Web application is
essentially a system in which transitions occur from one Web page to another
and outputs are produced according to the inputs/actions at and the current
state.

Test cases for testing a Web application can be generated from FSMs. The
methodology required to generate test cases from FSMs is described in [20].
A simple Web application can face the state space explosion problem as there
can be a very large number of possible inputs to a text field, a large number

15

of options (e.g., checkboxes, links) can be available on a particular page, and
a large number of different orders in which the options can be selected. For
example, for a simple set of 5 questions each containing 4 possible options (in
the form of checkboxes), there can be 45 (1024) different combinations of user
selected options. Thus, the FSMs must be expressive enough to test the system
effectively and also be small enough to be practical [20].

Hierarchical FSMs [20] have been employed to alleviate the state space ex-
plosion problem, by reducing the number of states and transitions in a FSM.
The bottom level FSMs are formed from Web pages and parts of Web applica-
tion known as logical Web pages, and the top level FSM represents the entire
Web application. A logical Web page may either be a simple physical Web page
or an HTML form which accepts inputs from the user and sends it to a different
software module. The logical Web pages (LWP) can be easily extracted because
these are embedded with HTML “Form” tags.

Next, in order to generate test cases manually from the Web applications,
the following four steps are performed [20]:

1. Partitioning the Web application into clusters, where a cluster comprises
software modules and Web pages which implement a certain logical func-
tion. Clustering is done to identify the different layers of abstraction. At
the top level, clusters are abstractions that implement functions that can
be identified by users. At lower levels, clusters are a set of Web pages
and software modules which communicate with each other to implement
some user-level functions. At the lowest level, clusters may be individual
Web pages and software modules that represent single major functions
themselves. Individual clusters can be identified from the layout of the
site navigation, coupling relationships among the components, and the
information that can be obtained from site design [20]. This process is
manual, and as a result, the clusters and the entire partitioning process
can have an impact on the resulting tests [20].

2. Extracting Logical Web Pages (LWP). This process can be automated,
because HTML Forms that accept input data from the user and send it to
a back-end software module are embedded with HTML “Form” tags. The
identification of LWPs can, therefore, be carried out by extracting these
HTML tags.

3. Building FSMs for each cluster. A bottom-up approach is followed to
construct these FSMs. First, the FSMs are generated from bottom-level
clusters that contain software modules and Web pages (i.e., no clusters).
Next, higher-level cluster FSMs are built by aggregating lower-level FSMs.
Each state or node in these higher-level FSMs represents a lower-level
FSM. This process is completed manually.

4. Building an application FSM for the entire Web application. Lastly, an
application finite state machine (AFSM) defines a finite state model of
the entire Web application, in which the edges represent the navigation
or links between different Web pages in different clusters. Each FSM is
assumed to have a single entry and exit node (“dummy” or extra nodes

16

may be added to guarantee this requirement). The final result of this
partitioning is a collection of autonomous (separate but interacting) finite
state machines with the following two properties. First, they are small
enough to efficiently allow test sequences to be generated. Second, they
clearly define the information that propagates among the FSMs. This
process is accomplished manually.

The state space explosion problem in finite state machines can be dealt with
more effectively by defining a BNF grammar for the input constraints on the
Web application. For input values, [20] defines five broad choices, namely, R
(if the input is required, i.e., the user has to enter a value to transition from
one state to another), R(parm = value) (if the input is required and can only
be chosen from a subset to transition from one state to another), O (if input
is optional), C1 (if the user only needs to select one input from a given list of
inputs, e.g., a radio button) and Cn (if the user needs to select multiple values
from a list, e.g., check-boxes). In order to define the order of values, [20] defines
two symbols, S (if the values must be entered in a particular order) and A (if
the values can be entered in any order). The types of inputs can be further
broken down into “text” and “non-text”. FSMs with input constraints are called
“annotated FSMs”. The advantage of “annotated FSMs” over normal FSMs are
shown clearly in Figure 2(a) and Figure 2(b). Assuming that there is a Web
application with input fields “username” and “password”, where the username
and password must differ from each other and there are only 3 possible choices
for usernames and passwords, namely “a”, “b” and “c”, then the normal FSM with
different states and transitions will be constructed as shown in Figure 2(a). But,
if annotated FSMs are used, then the different states and transitions can simply
be replaced with the “annotated constraints” (such as “R”, “S” and “A” to test
for the order of entered values as well as for the actual values entered).

The FSMs defined above are then used to generate tests. Tests are generated
as sequences of transitions and the values for inputs are then selected randomly.
A test sequence is a sequence of transitions in an FSM and the associated
constraints.

The main limitation of this approach is that the finite state machines have
to be constructed manually. Thus, the process is difficult to be fully automated.
The advantage of this approach is in the reduction in the number of states in an
FSM, which helps solve the state space explosion problem as discussed above.
Also, the extraction of the logical Web pages (LWPs) can be done automatically.
The use of annotated FSMs also makes it easier to derive a model of the complete
Web application incrementally.

3.3. Probable FSM
An extension of the FSM described above is the probable (probabilistic) FSM.

A method for generating test cases from the probable FSM is described in [21],
where the probabilistic FSM is constructed manually, and the test sequences
are selected on the basis of probabilities of a given sequence. In such an FSM,
in addition to the states and transitions, a probability is also assigned to each

17

A.A. Andrews et al.: Testing Web applications by modeling with FSMs 333

3.3 Annotating FSMs and logical Web pages

The partitioning of the logical Web pages results in a hier-
archical collection of finite state machines. At the low-
est level, logical Web pages are represented by nodes in
FSMs that model behavior of software modules and Web
pages. Edges represent transitions among logical Web
pages and software modules. Each cluster in turn forms
a node in a higher level FSM that models behavior of clus-
ters. Edges in both levels of FSMs are annotated with
inputs and constraints that may be associated with the
transition.

3.3.1 Input selection constraints for logical Web pages

Logical Web pages are described via the sets of related in-
puts and actions. In addition, there may be rules on the
inputs. For example, some inputs may be required and
others may be optional. A user may be allowed to enter
inputs in any order, or a specific order may be required.
Table 5 shows input constraints of both types; other con-
straints may be defined in future work. A precise defin-
ition of our language used to express the constraints is
given in a BNF grammar in Appendix A.

A possible set of input constraints for logging on
would be: R(user-name, password, submit) and S(user-
name, password, submit). This means that the three re-
quired inputs can be entered in order. If password and
user name can be entered in any order, the constraint
for sequencing would be S(A(user-name, password), sub-
mit). Single constraints (C1) mean that a single input
must be selected from a set of choices and multiple choice
constraints (Cn) mean that multiple inputs must be se-
lected from a set of choices.

Inputs also can be of a variety of types, including
text (from single digits to single lines to large files), but-
tons (from single button to choices from a set of but-
tons), links, etc. Table 6 shows a list of the types of in-
puts found in Web applications (based on HTML Form
elements).

Figure 6 shows the login constraints, under the as-
sumption that user name and password may be entered
in any order. The advantage of these kinds of constraints
can be observed from this example. Figure 6 only has two
nodes. Without the constraints, the FSM would have five
nodes, as in Fig. 7, which has explicit transitions to repre-

Table 5. Constraints on inputs

Input Choice Order

Required (R) Sequence (S)
Required Value (R(parm=value)) Any (A)
Optional (O)
Single Choice (C1)
Multiple Choice (Cn)

Table 6. Types of inputs

Text Non-text

digit links
line buttons
email radio button
phone drop-down list
URL check boxes
multi-line
file

Fig. 6. Annotated FSM for login

Fig. 7. FSM for login without constraint annotation

Fig. 8. FSM for three button UI
with no constraint annotation

sent the two different orderings. In effect, the transitions
introduce a simple type of controlled non-determinism
into the FSM. The savings in FSM size are even more pro-
nounced for optional, single, and multiple choice sets of
inputs.

For example, if an LWP requires choosing two of three
buttons a, b, and c in no required order, the annotated
FSM consists of two nodes and one edge with the anno-
tation C2(a, b, c); A(a, b, c). If the corresponding FSM
with single inputs is used, then we can have the inputs
a followed by b or c, b followed by a or c, or c followed
by a or b. This FSM would have 10 nodes and 9 edges as
shown in Fig. 8. Similarly, having three required inputs

(a) Normal FSM for a simple Web
application with fields username and
password.

A.A. Andrews et al.: Testing Web applications by modeling with FSMs 333

3.3 Annotating FSMs and logical Web pages

The partitioning of the logical Web pages results in a hier-
archical collection of finite state machines. At the low-
est level, logical Web pages are represented by nodes in
FSMs that model behavior of software modules and Web
pages. Edges represent transitions among logical Web
pages and software modules. Each cluster in turn forms
a node in a higher level FSM that models behavior of clus-
ters. Edges in both levels of FSMs are annotated with
inputs and constraints that may be associated with the
transition.

3.3.1 Input selection constraints for logical Web pages

Logical Web pages are described via the sets of related in-
puts and actions. In addition, there may be rules on the
inputs. For example, some inputs may be required and
others may be optional. A user may be allowed to enter
inputs in any order, or a specific order may be required.
Table 5 shows input constraints of both types; other con-
straints may be defined in future work. A precise defin-
ition of our language used to express the constraints is
given in a BNF grammar in Appendix A.

A possible set of input constraints for logging on
would be: R(user-name, password, submit) and S(user-
name, password, submit). This means that the three re-
quired inputs can be entered in order. If password and
user name can be entered in any order, the constraint
for sequencing would be S(A(user-name, password), sub-
mit). Single constraints (C1) mean that a single input
must be selected from a set of choices and multiple choice
constraints (Cn) mean that multiple inputs must be se-
lected from a set of choices.

Inputs also can be of a variety of types, including
text (from single digits to single lines to large files), but-
tons (from single button to choices from a set of but-
tons), links, etc. Table 6 shows a list of the types of in-
puts found in Web applications (based on HTML Form
elements).

Figure 6 shows the login constraints, under the as-
sumption that user name and password may be entered
in any order. The advantage of these kinds of constraints
can be observed from this example. Figure 6 only has two
nodes. Without the constraints, the FSM would have five
nodes, as in Fig. 7, which has explicit transitions to repre-

Table 5. Constraints on inputs

Input Choice Order

Required (R) Sequence (S)
Required Value (R(parm=value)) Any (A)
Optional (O)
Single Choice (C1)
Multiple Choice (Cn)

Table 6. Types of inputs

Text Non-text

digit links
line buttons
email radio button
phone drop-down list
URL check boxes
multi-line
file

Fig. 6. Annotated FSM for login

Fig. 7. FSM for login without constraint annotation

Fig. 8. FSM for three button UI
with no constraint annotation

sent the two different orderings. In effect, the transitions
introduce a simple type of controlled non-determinism
into the FSM. The savings in FSM size are even more pro-
nounced for optional, single, and multiple choice sets of
inputs.

For example, if an LWP requires choosing two of three
buttons a, b, and c in no required order, the annotated
FSM consists of two nodes and one edge with the anno-
tation C2(a, b, c); A(a, b, c). If the corresponding FSM
with single inputs is used, then we can have the inputs
a followed by b or c, b followed by a or c, or c followed
by a or b. This FSM would have 10 nodes and 9 edges as
shown in Fig. 8. Similarly, having three required inputs

(b) Annotated FSM for the same
Web application.

Figure 2: A demonstration of the advantages of an annotated FSM over a normal FSM, as
given by [20, Figure 8].

transition. In this case, the transition function T is redefined to include the
current state, the transition t1 and the probability associated with t1. Thus,
the transition function δ(s1, t1, pr) = s2 means that if the current state is s1
and there is a transition t1 from s1 with the probability pr (such that 0 ≤
pr ≤ 1), then there will be a transition from s1 to s2. The sum of all the
values from a given state may not add up to 1. This is because the individual
probabilities of different transitions represent the probability with which it is
possible to get to another state (e.g., user session). Thus, there are other events,
of very low or negligible probability, which are not usually modelled in the
probable finite state machine. The proposed PFSM usage model can capture
information about control flow, data flow, transaction processing and associated
probabilistic usage, and criticality information. An example probable FSM [21]
with transitions and states is shown in Figure 3.

A test case is defined as any path from the source node (start state) to the
target node (final state). In order to generate test cases, a list of all the path
transitions from the source node to the target node is generated. Then proba-
bilities are calculated for all the individual paths that have been generated (by
multiplying the individual probabilities for the transitions). A specific threshold
value is also obtained. The test suite then comprises all the paths which have a
probability higher than the threshold value.

For example, in the probabilistic finite state machine depicted in Figure 3,
there are at least four potential paths from state s1 to s5, namely:

Path A: k4 → k5 → k7 (s1 → s4 → s3 → s5)

Path B: k4 → k6 (s1 → s4 → s5)

Path C: k2 → k7 (s1 → s3 → s5)

18

The usage model based-on PFSM
A PFSM usage model comprises a unique start state, a set of final states, a set of intermediate

usage states, and transitions between states. User actions are represented as state transitions in the
PFSM usage model. The probability that a user performs a given action (input) in a particular state
is represented by the associated transition probability in the PFSM usage model.

The usage model of our approach is obtained by decorating the general FSM model with
probabilities deduced from the Web log files. Web logs can be used to produce PFSMs that can be
employed to generate user sessions. These user sessions can then be combined into effective test
suites. To selectively generate user sessions that are more or less likely to occur in practice, it needs
to produce the probability of each possible user session. Usually, the probability of a user session
can be represented as the product of the probability of each request within the session.

As discussed above, the PFSM usage model originates from FSM with transitions weighted
with probabilities, so the resulting model typically describes the state of usage rather than the state
of the Web application. The probabilities of all transitions leading away from a state need to add up
to 1. Note that, the probabilities from some of the states are not added up to 1 in Fig. 1, because
there may be other situations, in which the user quits the Web application from the given state
without following the normal navigations. The user can, for example, traverse to s3 via k5 with the
probability 0.5, to s5 via k6 with the probability 0.4 from s4. The sum of the values of the
probabilities from state s4 equals to 0.9 (0.5+0.4), not 1. This means that other events may also
happen. For example, the user quits the Web application by just closing the Web browser window.

In a PFSM usage model, the state transitions can be represented as a two-dimensional table with
the state labels as indices and the direct transition probabilities as entries. Note that exit transitions
for each state have probabilities that sum to 1. The number in cell (si, sj) of the transition table
represents the probability of a transition directly from state si to state sj. Table 1 gives the transition
table constructed according to the PFSM usage model shown in Fig. 1.

Table 1. The probability transition table

s1
s2
s3
s4
s5
s6
s7

s1 s2 s3 s4 s5 s6 s7
0 0.4 0.2 0.4 0 0 0
0 0 0 0 0 0.9 0
0.4 0 0 0 0.6 0 0
0 0 0.5 0 0.4 0 0
0 0 0 0 0 0.8 0
0 0 0 0 0 0 0.9
0 0 0 0 0 0 0

A multi-leveled usage model
The whole PFSM usage model for a complete Web application will be too large to manage. We

divide a Web application into a set of modules/functions, each of which can be considered as a sub

Fig.1. The STD of an example PFSM

k3/0.4

k9/0.8

k4/0.4

k8/0.9 k7/0.6

k1/0.4

k10/0.9

k6/0.4

k2/0.2

k5/0.5

s1

s4 s3 s2

s6 s5

s7

$GYDQFHG�0DWHULDOV�5HVHDUFK�9ROV��������� ���

Figure 3: An example probable FSM as described in [21, Figure 1].

Path D: k4 → k5 → k3 → k2 → k7 (s1 → s3 → s1 → s3 → s5)

The probabilities for each of these individual paths are simply the multiplica-
tions of the individual probabilities of the different transitions. Thus, as per
Figure 3, the probabilities are as follows:

Path A: 0.4 ∗ 0.5 ∗ 0.6 = 0.12

Path B: 0.4 ∗ 0.4 = 0.16

Path C: 0.2 ∗ 0.6 = 0.12

Path D: 0.4 ∗ 0.5 ∗ 0.4 ∗ 0.2 ∗ 0.6 = 0.0096

Now, only the test cases which meet the threshold value are selected. Thus,
assuming that the threshold value was set to 0.1, only Paths A and B will be
selected as the test cases for the test suite. A high threshold value can be
selected to test only the most frequently used operations and gradually lowered
to involve the rarer and more unique operations and ensure the satisfactory
coverage or reliability for a wider variety of operations. Thus, the threshold
value can be modified to control the number of test cases generated and its
coverage.

The limitation of this work is that the probable FSM cannot be generated
automatically and thus the testing process will be slow since the FSM construc-
tion has to be done manually. This work also does not explain thoroughly as to
how the probabilities are assigned to different transitions from different states.
Also, the FSMs represent an incomplete model of the system, since only the
most “likely” transitions are modelled, and the unlikely events are not included
in the FSM. Thus, it would be very hard to test for “rare events” which may be
crucial to the security of Web applications.

19

4. Mutation Testing

Mutation testing is a form of testing in which a program P is taken as
input. A modified version of the program P is then created by applying certain
mutation operators to the original program. Test cases are designed with the
aim of detecting program modifications. The modified versions of the program
are called mutants [41, 42, 43] and if a test case can detect a mutant (i.e., the
line of code where the mutation operator has been applied), then the test case
is said to kill the mutant. Otherwise the mutant stays live.

Praphamontripong and Offutt [22] implement mutation testing for Java
Server Pages (JSP) and Java Servlets. The mutation operators are defined
specifically for these applications and are implemented in a tool called mu-
Java [44]. muJava automatically creates mutants and allows tests to be run
against the mutants. Tests are created manually as sequences of requests [22].

11 new mutation operators are defined specifically for Web applications [22].
These mutation operators are grouped into two categories, (1) operators modify-
ing HTML applications and (2) operators modifying JSP applications. Some of
the operators for HTML include, e.g., “simple link replacement (WLR)” which
replaces the “” attribute value with another address in the same do-
main. The “W” in WLR indicates that the mutation operator deals with Web-
specific features, “R” indicates that the operator replaces some field and “L”
indicates that it exercises the links in a Web application (e.g., non-existent or
incorrect URLs). Similarly, mutation operator exists for (a) deleting a link
(“simple link deletion (WLD)”, where “D” indicates that the operator deletes
a field), (b) replacing the destination address of an HTML form (“form link
replacement (WFR)”), (c) replacing “GET” requests with “POST” requests and
vice-versa (“transfer mode replacement (WTR)”), and (d) replacing and delet-
ing the form values of type hidden. Also, in order to detect server side faults,
Praphamontripong and Offutt [22] create mutation operators for replacing and
deleting server side “include” statements (which basically describes what other
files need to be included in a particular application). Mutation operators for JSP
include operators which change the forwarding destination of a redirect transi-
tion specified in “<JSP:forward>” (“redirect transition replacement (WRR)”),
and deleting the destination address (“redirect transition deletion (WRD)”).

Praphamontripong and Offutt [22] apply testing on a moderate-sized appli-
cation called the “Small Text Information System (STIS)” [45]. STIS comprises
18 Java Server Pages (JSPs) and 5 Java bean classes and stores the information
in a MySQL database. Praphamontripong and Offutt [22] applied mutation
operators to only the JSPs and excluded 2 JSPs. A total of 219 mutants of the
application were tested, where the mutants were created by using the mutation
operators described above. The total number of live mutants in the applica-
tion (i.e., the mutants which reveal different faults) and which were undetected
by the tool muJava are 29 [22]. Most of these undetected faults were related
with replacing the form values of type hidden (23 out of 29). Thus Praphamon-
tripong and Offutt [22] show that mutation testing could be used to reveal a
large number of faults in a Web application (nearly 86% in this case). A total

20

of 147 hand-seeded faults are also planted in the application, out of which 118
were detected (∼ 80%) [22].

One of the main advantages of mutation testing approaches for Web appli-
cations is that it tests for most crucial errors which are likely to occur in a Web
application. For example, a lot of the server errors occur in a Web applica-
tion either due to some invalid form attributes, missing files or as a result of
not validating user inputs properly. The mutation testing technique proposed
by Praphamontripong and Offutt [22] is particularly effective in detecting such
defects which may occur on the server side. Similarly, on the client-side of the
application, a large number of errors are due to broken links (i.e., errors in the
destination links), missing files or invalid HTML. Again the mutation testing
approach [22] can be effectively applied for these defects.

5. Search Based Software Engineering (SBSE) Testing

Search Based Software Engineering (SBSE) is an approach that treats soft-
ware engineering problems as optimisation problems whose solutions require
searching through a state space [23]. The possible solutions need to be encoded
in a way that makes similar solutions proximate in the search space. A fitness
function is then defined which is then used to compare possible solutions. Hill
climbing is an iterative incremental algorithm often used in SBSE and found to
be effective for testing [46]. In hill climbing, a random solution is first chosen
and evaluated and then the nearest neighbours (determined by some heuris-
tic, e.g., distance) are evaluated. This process is iterated by changing a single
element in the solution and thus obtaining new solutions. If the value of the
fitness function of the new solution is better than the value of fitness function
of the older solution, then the newer solution replaces the previous one. This
process is repeated iteratively until no further improvements can be made to
the solution. Thus, the algorithm aims to find a solution which maximises the
fitness function (or the heuristic). This approach is simple and fast. However,
it is dependent on the randomly chosen starting point of the solution.

For the hill climbing algorithm, Korel [47] introduced the Alternating Vari-
able Method (AVM) into the search process. This method changes one variable
while ensuring other variables remain fixed. Branch distance is used to measure
how close an input comes to covering the traversal of a desired branch. When
the execution of a test case does not converge on the target branch, the branch
distance expresses how close an input came to selecting the correct path/branch
at a particular level and satisfying the predicate [48]. It also helps in determin-
ing the level along the target branch of the predicate at which control for the test
case went “wrong”; i.e., how close the input was to descending to the next branch
level. The branch distance is computed using the formula | offset − 1 | +K,
where K is the constant added when an undesired, alternate branch is taken by
the test case. The lower the absolute value of offset − 1, i.e., the closer the
value of offset is to 1, the closer the test case is to traversing along the correct
target branch [48]. A different branch distance formula is applied depending
on the type of relational predicate. In the case of relational equals, the branch

21

distance is equal to | a − b | +K. The formulas for different branch distances
depending on the type of relational predicates is described in [49].
If the changes to a variable affect branch distance, a larger change is applied in
the same direction in the next iteration. In case, as a result of applying this
change, a false local optimum is chosen, the search is re-started at the previ-
ous best solution seen. The process continues until the branch is covered or no
further improvement is possible.

Alshahwan and Harman [23] apply Search Based Software Engineering to
testing PHP Web applications. The main aim of this technique is to maximise
the branch coverage of the application. The algorithm starts with a static
analysis phase that collects static information to aid the subsequent search based
phase. The search based phase uses an algorithm that is derived from Korel’s
Alternating Variable Method (AVM) in addition to constant seeding.

Several issues affect the application of search based techniques to Web ap-
plications, such as Dynamic typing (e.g., in different languages such as Ruby
and PHP, variables are dynamically typed, which makes it hard to determine
the type of variables used in predicates, which may in turn lead to problems
when deciding which fitness function to use). Another important issue is In-
terface Determination, which means that there is no way of determining the
interface in different PHP or JSP applications. In other words, there is no way
of knowing how many inputs are required for the application to execute. Other
problems also include client-side simulation of dynamic Web pages and dynamic
server-side include statements.

The algorithms for test data generation in [23] are based on hill climbing
using Korel’s AVM [47]. When a target branch is selected, AVM is used to
mutate each input in turn while all other inputs remain fixed. When the selected
mutation is found to improve fitness value, the change in the same direction is
accelerated. To avoid overestimating (or over shoot), the change is decelerated
when the fitness function nears 0. Branches which have been reached but not
covered are then targeted in subsequent iterations. That is, a branch is reached
if its immediately controlling predicate is executed, while a branch is covered if
the branch itself is traversed. The algorithm(s) attempt to cover a branch only
when it is reached, i.e., all transitively controlling predicates on some path have
been satisfied. This technique is called an explorative approach [23]. At each
iteration the algorithm also keeps track of near miss input values. A near miss
input vector results in fitness improvement for a branch other than the targeted
branch. Near misses are used in place of random values when initialising a
search to cover that branch. This approach is called Near Miss Seeding (NMS).

The fitness function employed in this approach is similar to that used by
Tracey et al. [49]. This means that for a predicate “a op b” where op is a
relational operator, fitness is zero when the condition is true and the absolute
value of |a − b| when the condition is false. A fitness function has the value
0 if the test case covers the desired branch of the program. The main aim of
the technique is to minimize the fitness function values throughout the search
process. The fitness function value is incremented in a similar technique as
Tracey et al. [49]. That is, if the test case is incorrect, then the value of the fitness

22

function k is incremented by 1. For strings, Levenshtein distance [50] is used
as a fitness function, following Alshraideh and Bottaci [51]. The Levenshtein
distance is the minimum number of insert, delete and substitute operations
needed to convert one string to another string [23].

Each execution of a test case returns a list (F) of all branches in that execu-
tion and the branch distances. For every branch (B) that recorded an improve-
ment in the branch distance, the list, F , is used to update a coverage table (C),
and the resulting test suite (T). A list of branches, known as the work list, that
have been reached/traversed is extracted from the coverage table, and is then
processed in an attempt to cover it. To start, the database is initialised and the
user logs into the application. The input vector is then constructed using the
analysis data. Values for variables are initialised to values that caused a par-
ticular branch to be reached, and random values are selected for any additional
input variables. The input variables are mutated one at a time, and the process
continues until the branch has been traversed or no further improvements to
the fitness function are possible. The mutation algorithm is quite simple and
is described in [23]. Initially, if no input was selected for mutation, or the last
mutation had no effect on the branch distance, a new input variable is selected.
If the branch distance is increased as a result of performing a mutation, then a
new mutation operator is selected. Conversely, if the branch distance decreased
as a result of the mutation operation, the operation is accelerated [23].

Alshahwan and Harman [23] developed a tool called the “Search based Web
Application Tester” (SWAT) to implement this approach and embed it within an
end-to-end testing infrastructure. SWAT’s architecture is illustrated in Figure
4. The tool is composed of a pre-processing component, the Search Based Tester
and the Test Harness [23]. The description of the architecture is given below.

The original source code is transformed through the Predicate Expander and
Instrumenter. In the resulting transformed version of the code, predicates with
logical operators are expanded and control statements are modified to calculate
fitness and the original behaviour of the predicates. The code is also instru-
mented to collect run-time values to be used in subsequent dynamically mined
value seeding. The Static Analyser performs the analysis needed to resolve
issues that are associated with the standard Web scripting and development
languages, such as Ruby, JavaScript, JSP, ASP, PHP, etc. Some issues may
include the distinction between different data types (such as Integer and String)
in dynamically-typed languages, the absence of an explicit header that speci-
fies how many inputs a program expects and/or their types, handling dynamic
include statements in PHP applications, and identifying top-level pages when
trying to generate the test data.

The results obtained from the above step are stored in the Analysis Data
repository and used later by the Search Based Tester. The Constant Extractor
mines the code for constants to be used in subsequent Static Constant Seeding.
The Input Format Extractor analyses the code to extract the input vector com-
prising the values for input variables. The File Tree Analyser then generates
a tree. In this tree, the nodes are used to represent files and edges represent
include relationships. This is then used to determine the top-level test units to

23

be processed. The Input Type and Login Discoverer performs a conjunction of
static and dynamic analysis to infer the types of input variables and identify
the login process. The results of this the Input Type and Login Discoverer need
to be augmented manually because the technique for type inference cannot in-
fer types for all input variables. The Login Discoverer is used to dynamically
extract the variables that need to be set (i.e., have a value) during login, such
as the variables used to store the username, password, and the login URL. The
concrete values for “username” and “password” are provided to the tool. The
Test Harness uses the test data generated to execute the tests on the original
source code in addition to producing coverage and bug data. When a test case
is executed, the generated HTML and the Web server’s error logs are parsed for
PHP execution errors. This different components of this tool are implemented
using a combination of different languages, namely, Perl, Java, and Stratego/xt
(a program transformation language and PHP-Front provides libraries for Strat-
ego/xt supporting PHP).

The main advantage of Search Based Software Engineering is that testing
is complete and done thoroughly, with the major aim of improving branch cov-
erage. This is evident since the algorithm aims to cover branches which were
not covered in a previous iteration. The limitation would be that the algorithm
would probably be slow as compared to other simpler testing techniques such
as mutation testing, model based testing, or random testing.

Fig. 1. Form taken from PHPSysInfo

embed it within an end-to-end testing infrastructure. SWAT’s
architecture is illustrated in Figure 2. The tool is composed of
a pre-processing component, the Search Based Tester and the
Test Harness.

The original source code is passed through the Predicate
Expander and Instrumenter. This produces a transformed ver-
sion of the code where predicates with logical operators are
expanded and control statements are instrumented to calculate
fitness in addition to the predicates’ original behaviour. The
code is also instrumented to collect run-time values to be used
in subsequent Dynamically Mined Value seeding.

The Static Analyser performs the analysis needed to resolve
the issues mentioned in Section III-A. The results are stored
in the Analysis Data repository and used later by the Search
Based Tester. The Constant Extractor mines the code for
constants to be used in subsequent Static Constant Seeding.
The Input Format Extractor analyses the code to extract the
input vector. The File Tree Analyser generates a tree in which
nodes denote files and edges denote include relationships. This
information is used to determine the top level test units to be
processed.

Fig. 2. SWAT tool architecture

The ‘Input Type and Login Discoverer’ component performs
a simple combination of static and dynamic analysis to infer
input types and to identify the login process. This is the only
component for which results need to be augmented manually;
this is because the technique for type inference is unable to
infer types for all inputs. The Login Discoverer is used to
dynamically extract the variables used to store the username,
password, login URL and any other inputs that need to be set
for login. The concrete values for username and password are
provided to the tool.

Stratego/xt [8] and PHP-Front [6] were used to develop the

Predicate Expander, the Instrumenter, the Static Analyser and
the static analysis part of the Input Type and Login Discoverer.
Stratego/xt is a program transformation language and PHP-
Front provides libraries for Stratego/xt supporting PHP. The
Input Format Extractor was taken from the PHP-Front project
with minor alterations. All other transformation tools have
been developed from scratch. The dynamic part of the Input
Type and Login Discoverer was developed using Perl and Java.

The Search Based Tester uses the transformed source code
and the analysis data to implement the input generation
described by Algorithms 1 and the augmentations needed for
SCS and DMV. The Test Harness uses the generated test data
to run the tests on the original source code and to produce
coverage and bug data. When a test case is executed, the
generated HTML together with the web Server’s error logs
are parsed for PHP execution errors. The Search Based Tester
and Test Harness are implemented in Perl and use the HTTP,
HTML and LWP libraries.

V. EVALUATION

For the evaluation, we implemented three versions of the
tool. Each version adds one of the enhancements described in
Section III-C in the following way:

• NMS implements the Near Miss Seeding unaugmented
approach described in Algorithm 1 in Section III-C.

• SCS is NMS with Static Constant Seeding.
• DMV is SCS with Dynamically Mined Value seeding.

Each branch was allocated the same budget of fitness evalua-
tions for each version of the tool. In this way we can evaluate
the effects of each of our enhancements on the unaugmented
traditional search based approach.

We designed our experiment to answer the following re-
search questions:
RQ1: How does each of our enhancements affect branch
coverage?
To answer this question we compare branch coverage for each
of the algorithms. Coverage was measured on the original
untransformed application. The original application was in-
strumented to record coverage without the transformations to
expand predicates and calculate fitness.
RQ2: How does each of our enhancements affect efficiency
of the approach?
To answer this question we calculate the number of fitness
evaluations needed per application and per branch. We also
report the elapsed time and CPU time used in testing per
application and per branch.
RQ3: How does each of our enhancements affect fault
finding ability?
To answer this question we use an automated oracle to
compare the fault finding ability of the test suites produced
by each enhancement. The automated oracle parses PHP error
logs and the HTML output for execution errors and warnings.
We perform a Wilcoxon unpaired one-sided signed rank test
at the 95% confidence level to determine the statistical signif-
icance of the observed results.

7

Figure 4: The architecture of the SWAT system as described in [23, Figure 2]

6. Scanning and Crawling Techniques

Security vulnerabilities represent serious risks for Web applications. In a lot
of applications, they result from generic input validation issues. Examples of

24

such vulnerabilities are SQL injections and Cross-Site Scripting (XSS) attacks.
The majority of these vulnerabilities are easy to detect and avoid if the pro-
grammers are aware of the potential pitfalls. However, many Web developers
do not focus on security issues, which leaves the Web applications vulnerable
to malicious attacks. As a result, many Web sites on the Internet suffer from
insufficient security tests and checks.

Scanners are tools which detect these errors by injecting invalid inputs into
a Web application and then determining what type of errors exist according
to the behaviour of the Web application. Crawlers are tools that browse the
Web and collects information in a predefined and automated manner. There
are many different scanning and crawling techniques that are used for detecting
vulnerabilities in Web applications. In most cases, the vulnerability of a Web
application is detected by injecting faults into the Web application. This is a
reliable form of testing Web sites for security vulnerabilities and can thus be
used to detect the type of bugs present as well as the number of bugs present
in a Web application.

The main advantage of scanners is that it helps in detecting the bugs which
the programmer usually does not think of testing when designing Web appli-
cations. As was discussed earlier, a large number of Web sites do not perform
proper Web site form validation and this may result in unwanted reads from and
writes to the database. Thus, this may result in the breach of sensitive private
information on a large scale, especially for popular applications such as banking
and e-commerce Web sites. Additionally, such bugs may also result in the loss
of reputation of a company. Thus, detecting such bugs helps in improving the
quality and security of the Web site and helps in preventing major economic
losses.

The basic idea behind scanning is that some unsanitised input is injected
into HTML forms, which is then sent to the server. If the Web application has
proper validations and performs proper input sanitation for user data, then it
will behave normally. Otherwise, there may be breaches in security and severe
implications such as writing unsafe values to the database and breaching of
privatised data. Scanners can be grouped into two broad categories, black-
box and white-box scanners. Out of these two, black-box scanners are more
popular due to the limitations of the white box scanners, in particular due to the
heterogeneous programming environments (i.e., many programming languages
used to develop different parts of the Web application). Additional factors
which limit the effectiveness of white-box scanners include the complexity of
applications, which incorporate databases, business logic, and user interface
components. In practice, black-box vulnerability scanners are used to discover
security problems in Web applications. These tools operate by launching attacks
against an application and observing its response to these attacks.

We start with an introduction to two prominent forms of attacks, cross-site
scripting (XSS) and SQL injection in Section 6.1. In Section 6.2 we present a
number of black-box scanning techniques and systems. Dynamic AJAX-based
Web applications present unique challenges to testing. We discuss these chal-
lenges and survey some JavaScript and AJAX crawlers and show how they can

25

be used to test AJAX-based Web applications in Section 6.3.

6.1. XSS and SQL Injection Detection Techniques
SQL Injection (SQLI) and cross-site scripting (XSS) attacks are forms of

attack in which the attacker modifies the input to the application to either read
user data or trick the user into executing malicious code which may corrupt a
large collection of different user records (e.g., a database). The serious attacks
(also called second-order, or persistent, XSS), enable an attacker to write corrupt
data into the database so as to cause subsequent users to execute malicious code.
Common approaches to identifying SQLI and XSS vulnerabilities and preventing
exploits include defensive coding, static analysis, dynamic monitoring, and test
generation. Each of these techniques have their advantages and drawbacks.

Web applications usually read in user data which is then sent to the server
side for processing. This data can then be used as parameters to SQL queries
on the server side. Therefore, it is important to sanitize the user input because
if the data is not properly processed prior to SQL query construction, malicious
patterns that result in the execution of arbitrary SQL or even system commands
being injected. Assume there are two field variables named “userName” and
“passWord” in a “login” form. Then, in order to check for a valid user login, a
SQL query can be constructed (after these two fields are sent to the server side)
as follows [24, pp. 150]:

1 $userName = $_GET [’$userName ’]; //PHP GET request
2 $passWord = $_GET [’$passWord ’];
3 //SQL Query
4 SQLQuery = "SELECT * FROM Users WHERE (UserName=’" +

$userName + " ’) AND (Password=’" + $passWord + "’);
"

5 if (GetQueryResult(SQLQuery) = 0)
6 validLoginUser = false;
7 else
8 validLoginUser = true;

This code checks if there are any rows returned from the database with the
user entered “userName” and “passWord” fields. If 0 rows are returned, then this
means the login is invalid, otherwise it is valid. However, if the user input is not
sanitised, a malicious hacker will be able to enter values for both fields such as
X’ OR ’1’ = ’1’. Now, this results in the SQL statement being converted to:

1 SQLQuery = "SELECT * FROM Users WHERE (UserName=’X’ OR
’1’ = ’1’) AND (Password=’X’ OR ’1’ = ’1’)";

Since the condition ’1’ = ’1’ will always evaluate to true, the entire con-
dition in the WHERE clause evaluates to true and no checking is done for the

26

user entered values. As a result of executing this query, information about all
users will be returned, which is a serious security breach.

As with SQL injection, cross-site scripting is also associated with undesired
data flow. In order to understand it, a following scenario can be provided. A
Web site for selling computer-related merchandise holds a public online forum
for discussing the newest computer products. Messages posted by users are
submitted to a CGI (Common Gateway Interface) program that inserts them
into the Web application’s database. When a user sends a request to view posted
messages, the CGI program retrieves the messages from the database, generates
a response page, which is then sent to the Web browser used by the client of
the Web application. In this scenario, a hacker can post messages containing
malicious scripts into the forum database. When other users view the posts,
the malicious scripts are delivered via the response page and can be spread on
a user’s machine as a result of them using the Web application [52].

Most browsers enforce a Same Origin Policy9 that limits scripts to accessing
only those cookies that belong to the server from which the scripts are delivered.
In this scenario, even though the executed script was written by a malicious
hacker, it was delivered to the browser on behalf of the Web application. Such
scripts can therefore be used to read the Web application’s cookies and break
its security mechanisms.

A tool for detecting such SQL injections and cross-site scripting, Web Appli-
cation Vulnerability and Error Scanner (WAVES), is proposed [24]. In WAVES,
the crawler (for exploring a Web site) tries to search for the existence of links
inside a Web page by detecting HTML anchor tags, framesets, meta refresh di-
rections, client-side image maps, form submissions, JavaScript event generated
executions, JavaScript variable anchors and checking for JavaScript redirections
and new windows. In addition, the crawlers act as interfaces between Web ap-
plications and software testing mechanism and allow the application of testing
techniques to Web applications. WAVES performs an event-generation process
to stimulate the behaviour of active contents. This allows WAVES to detect ma-
licious components and assist in the URL discovery process. During stimulation,
JavaScripts located within the assigned event handlers of dynamic components
are executed, possibly revealing new links.

The WAVES architecture is represented diagrammatically in Figure 5. The
main purpose of the Injection Knowledge Manager (IKM) is to bypass the ex-
isting validation procedures in the Web application by producing variable can-
didates. This knowledge can also be used during the crawl process. When a
crawler crawls through a form, it sends a query to the IKM. The data produced
by the IKM is then submitted by the crawler to the Web application for dis-
covery of further back-end pages, i.e., deep page discovery. In order to make
the crawl process faster, a URL hash is implemented. This completely elimi-
nates disk access during the crawl process. The global bottlenecks at the URL

9http://www.w3.org/Security/wiki/Same_Origin_Policy. This site was last accessed on
January 31, 2013.

27

hash is further reduced by the presence of a distinct 100-record cache. This
implementation strategy is similar to the one described in [53].

In WAVES, a sample site was established to test several academic and com-
mercial crawlers, including Teleport,10 WebSphinx [54], Harvest [55], Larbin,11
Web-Glimpse [56], and Google. None were able to crawl beyond the fourth
level of revelation (which is nearly about one-half of the revelation capabil-
ity of the WAVES crawler, which is 7). Revelations 5 and 6 are the result of
WAVES ability to interpret JavaScripts. Revelation 7 refers to link-revealing
JavaScripts, but only after different user-generated events such as “onClick” and
“onMouseOver”.

The SEE provides a) a self-protection mechanism to guard
against malicious code, and b) a method to detect malicious code
inserted into Web applications. One deficiency is that the
mechanism only detects code that has already been inserted, and
not the weaknesses of Web applications that make them
vulnerable to attack. Detecting such vulnerabilities requires an
off-line static analysis of Javascripts retrieved during the reverse
engineering phase. We are still in the initial phase of designing
and experimenting with this analytical procedure.

3. SYSTEM ARCHITECTURE AND
IMPLEMENTATION DETAILS

Figure 7 depicts the entire WAVES system architecture,
which we will briefly describe in this section.

The crawlers act as interfaces between Web applications and
software testing mechanisms. Without them we would not be able
to apply our testing techniques to Web applications. To make
them exhibit the same behaviors as browsers, they were equipped
with IE’s DOM parser and scripting engine. We chose IE’s
engines over others (e.g. Gecko [39] from Mozilla) because IE is
the target of most attacks. User interactions with Javascript-
created dialog boxes, script error pop-ups, security zone transfer
warnings, cookie privacy violation warnings, dialog boxes (e.g.
“Save As” and “Open With”), and authentication warnings were
all logged but suppressed to ensure continuous crawler execution.
Please note that a subset of the above events is triggered by Web
application errors. An obvious example is a Javascript error event
produced by a scripting engine during a runtime interpretation of
Javascript code. The crawler suppresses the dialog box that is
triggered by the event, but more importantly, it logs the event and
prepares corresponding entries generating an assessment report.

When designing the crawler, we looked at ways that HTML
pages reveal the existence of other pages, and came up with the
following list:

1. Traditional HTML anchors.
 Ex: Google
2. Framesets.
 Ex: <frame src = “http://www.google.com/top_frame.htm”>
3. Meta refresh redirections.
 Ex: <meta http-equiv="refresh"
 content="0; URL=http://www.google.com">
4. Client-side image maps.
 Ex: <area shape=”rect” href =”http://www.google.com”>
5. Javascript variable anchors.
 Ex: document.write(“\” + LangDir + ”\index.htm”);
6. Javascript new windows and redirections.
 Ex: window.open(“\” + LangDir + ”\index.htm”);
 Ex: window.href = “\” + LangDir + “\index.htm”;
7. Javascript event-generated executions.
 Ex: HierMenus [21].
8. Form submissions.

We established a sample site to test several commercial and
academic crawlers, including Teleport [62], WebSphinx [38],
Harvest [12], Larbin [56], Web-Glimpse [35], and Google. None
were able to crawl beyond the fourth level of revelation–about
one-half of the capability of the WAVES crawler. Revelations 5
and 6 were made possible by WAVES’ ability to interpret
Javascripts. Revelation 7 also refers to link-revealing Javascripts,
but only following an onClick, onMouseOver, or similar user-
generated event. As described in Section 2.4, WAVES performs
an event-generation process to stimulate the behavior of active
content. This allows WAVES to detect malicious components and

assists in the URL discovery process. During stimulation,
Javascripts located within the assigned event handlers of dynamic
components are executed, possibly revealing new links. Many
current Web sites incorporate DHTML menu systems to aid user
navigation. These and similar Web applications contain many
links that can only be identified by crawlers capable of handling
level-7 revelations. Also note that even though IKM’s main goal
is to produce variable candidates so as to bypass validation
procedures, the same knowledge can also be used during the
crawl process. When a crawler encounters a form, it queries the
IKM; the data produced by the IKM is submitted by the crawler
to the Web application for deep page discovery.

Figure 7. System architecture of WAVES.

In the interest of speed, we implemented a URL hash (in
memory) in order to completely eliminate disk access during the
crawl process. A separate 100-record cache helps to reduce global
bottlenecks at the URL hash. See Cho [19] for a description of a
similar implementation strategy. The database feeder does not
insert retrieved information into the underlying database until the
crawl is complete. The scheduler is responsible for managing a
breadth-first crawl of targeted URLs; special care has been taken
to prevent crawls from inducing harmful impacts on the Web
application being tested. The dispatcher directs selected target
URLs to the crawlers and controls crawler activity. Results from
crawls and injections are organized in HTML format by the report
generator. Work is still being performed on the static analyzer and
UML generator.

4. RELATED WORK
Offutt [41] surveyed Web managers and developers on quality

process drivers and found that while time-to-market is still
considered the most important quality criteria for traditional
software, security is now very high on the list of concerns for
Web application development. Though not specifically aimed at
improving security attributes, there has been a recent burst of
activity in developing methods and tools for Web application
testing [9] [27] [48], analysis [48] [52], and reverse engineering
[22] [23] [49] [50] [51] [63]. Many of these studies took black-
box approaches to Web application analysis and reverse
engineering. WAVES uses a similar process for identifying data

154

Figure 5: A diagram showing WAVES architecture as described in [24, Figure 7]

6.2. Black-box Web Vulnerability Scanners
Black-box Web application vulnerability scanners are automated tools that

test Web applications for security vulnerabilities. Black-box scanner do not have
access to source code used to build the application. While there are intrinsic
limitations of black-box tools, in comparison with code walk through, auto-
mated source code analysis tools, automated black-box vulnerability scanners
also have advantages. Black-box scanners mimic external attacks from hackers,

10http://www.tenmax.com/teleport/home.htm. This site was last accessed on January 31,
2013.

11http://larbin.sourceforge.net/index-eng.html. This site was last accessed on Jan-
uary 31, 2013.

28

provide cost-effective methods for detecting a range of important vulnerabili-
ties, and may configure and test defenses such as Web application firewalls. The
effectiveness of a black box scanner depends on three factors, namely:

1. whether the scanner can detect key vulnerabilities of interest to the Web
developers, i.e., the class/type of vulnerabilities detected by scanners,

2. effectiveness of the scanner in detecting faults, and
3. whether the vulnerabilities detected by scanners are representative of the

general vulnerabilities of Web applications.

Bau et al. [25] performed a comparative study on 8 well-known commercial
scanners and tested them on well-known Web applications such as phpBB,12
Drupal13 and Wordpress.14 It was discovered that all of them had vulnerabili-
ties. A custom application was described [25] to measure elapsed scanning time
and scanner-generated network traffic.

Bau et al. tested the scanners for false positive performance and vulnerabil-
ity detection. They found that the vulnerabilities tested most extensively by
scanners are, in ascending order, Information Disclosure, Cross Site Scripting
(XSS), SQL injection, and other forms of Cross Channel Scripting (XCS). This
vulnerability distribution for faults is nearly the same as the distribution of
vulnerability populations in the wild.

The authors also found that most scanners are only effective at follow-
ing destination links which are mentioned explicitly in the Web pages (e.g.,
). In other words, most scanners were not
effective at following implicit links through active content technologies such as
Java applets and Flash.

Another important finding in Bau et al. [25] highlights that most scanners
were effective in detecting type 1 or simpler XSS vulnerabilities (in which no
invalid data is written to the database), e.g., the average percent of “reflected
cross-site scripting” faults detected by scanners are 60%. The scanners were
also poor at detecting “stored” vulnerabilities (e.g., the “stored XSS” detection
rate was roughly 15%, and no scanner could detect second-order SQL injection
vulnerabilities) [25]. In stored XSS vulnerabilities, unsanitised user input is
directly written to the database and the test cases are then tested by reading
in unsanitised values from the database. First-order SQL injection is an SQL
injection that the scanner probes for vulnerabilities by executing an SQL com-
mand with unsanitised user input. Similar to stored XSS, a second-order SQL
injection means that unsanitised values are actually written to the database and
then the test cases are checked by reading in invalid values from the database.

Other advanced XSS vulnerabilities include the usage of non-standard tags
and keywords, such as prompt() and <style> [57]. In comparison, the study [25]
found the following detection rates for different type of faults:

12http://www.phpbb.com/. This site was last accessed January 31, 2013.
13http://drupal.org/. This site was last accessed on January 31, 2013.
14http://wordpress.com/. This site was last accessed on January 31, 2013.

29

• “XSS type 1” were detected with 62.5% success rate,

• “XSS advanced” was detected with 11.25% success rate,

• 20.4% of XCS (Cross Channel Scripting) vulnerabilities were detected,

• 21.4% of “SQL first order” vulnerabilities were detected,

• 32.5% of configuration vulnerabilities were detected, and

• 26.5% of session vulnerabilities were detected.

All the scanners used in the study had been approved for PCI Compliance
testing.15 The different types of SQL injection vulnerabilities and XSS (Cross
site scripting) vulnerabilities detection techniques are discussed in more detail
the following subsection.

SecuBat [8] is a black-box vulnerability scanner which tries to crawl through
Web sites in order to check for SQL and XSS (Cross-site scripting) validation
and find security flaws in a Web site through passing it unsanitised user input.
There are three main components of the SecuBat vulnerability scanner, namely,
the crawling component, the attack component and the analysis component.
These are described in more detail below:

The crawling component. The main purpose of this component is to gather
a list of Web sites/Web applications to target by the SecuBat scanner. In
order to start with a crawling session, the crawler is seeded with a valid
default root (Web) address. This address is used as the starting point and
a list of all the pages and Web forms which are accessible from this default
Web address are collected. This process can be repeated as many times
as desired as there are configurable settings in the SecuBat crawler to
control the maximum link depth, maximum number of pages per domain
to explore/crawl/collect, the maximum time for which the crawling process
should continue and the option of whether or not to collect the external
links in any page. In order to improve the crawling efficiency, several
concurrent worker threads are run during a particular crawling session.
Depending on the performance of the host machine, the bandwidth, the
targeted Web servers, usually 10 to 30 threads run concurrently during
any crawling session. The major implementation of the crawler is based
on existing crawling systems, such as the implementation of SharpSpider
by Moody and Palomino [58] and WebSpider by David Cruwys16.

15The original URL in [25] is no longer accessible. The following URL (https:
//www.pcisecuritystandards.org/approved_companies_providers/approved_scanning_
vendors.php. This site was last accessed on January 31, 2013.) seems to contain the current
listing.

16http://www.codeproject.com/Articles/6438/C-VB-Automated-WebSpider-WebRobot.
This site was last accessed on January 31, 2013.

30

The attack component. After the crawling phase of SecuBat is completed,
the processing of the list of collected Web pages starts. The attack com-
ponent scans each Web page collected during the scanning phase for Web
forms. This is mainly because the unsanitised Web inputs (to detect Web
vulnerabilities) are submitted to the different Web forms, and as a result,
these Web forms serve as the entry points for different unsanitised inputs.
For each form, SecuBat automatically extracts the address mentioned in
the action field of the forms (i.e., the address to which the unsanitised
inputs are sent) along with the method field (i.e., GET or POST). The dif-
ferent form fields and the CGI parameters are also collected. Then, the
unsanitised inputs for the various form fields are selected depending on
the type of the attack launched (SQL injection, simple XSS, encoded XSS
or form-redirecting XSS). Finally, the form contents, with the different
fields being set to values chosen, are uploaded to the server specified by
the action address (using either a GET or POST request). According to the
HTTP protocol, the attacked server responds to such a Web request by
sending back a response page via HTTP.

The analysis component. After the attack is launched by SecuBat and a
response page is sent back by the Web server via HTTP, the analysis
component then parses and interprets the response sent. In order to de-
termine whether the attack was successful, an attack-specific response cri-
teria and various keywords (e.g., “sqlexception”, “runtimeexception”, “error
occurred” and “NullPointerException”) are used to calculate a confidence
value. Usually, the confidence value is chosen such that false positives
(i.e., the attack is actually not successful but the confidence value indi-
cates otherwise) are reduced.

SecuBat is implemented in C# using Microsoft’s Visual Studio.NET 2003 In-
tegrated Development Environment (IDE). In order to store the list of the Web
pages collected from the crawling step and the data used to launch, attacks are
stored in a Microsoft SQL Server 2000 database server. Using a DBMS has the
advantages of efficient storage and logging of crawling and attack data, custom
querying, easy and efficient report generation of crawl and attack sessions and
easy access to data collected in previous sessions. The actual architecture of
SecuBat is shown in Figure 6. The tool comprises crawling and attack com-
ponents, as described earlier and these can be invoked independently. Thus,
the architecture allows a user to initiate a crawling session without having to
launch an attack, to launch an attack on previously collected historical data
from crawling sessions, or to perform a combined crawl and attack step. Secu-
Bat is able to launch about 15 to 20 parallel attack and response sessions on a
typical desktop computer without reaching full load [8].

The tool uses a dedicated crawling queue. This queue includes the crawling
tasks for each Web page, such as target forms and associated links. A queue
controller checks the crawling queue periodically for new tasks which are then
sent to the thread controller. The thread controller then chooses a free worker

31

thread, which then executes a task. The workflow controller is notified of the
discovered links and forms in a Web page by a thread when it has finished exe-
cuting a task. New crawling tasks are then generated by the workflow controller.
Similarly, attack tasks which comprise the attack data to be inserted into the
Web pages are stored in a separate queue, known as the attacking queue. The
queue controller processes the tasks in the queue and assigns them to the worker
threads which are available. This assignment is done via the common thread
controller.

GUI

Workflow	
 Controller

Database	
 Manager

Thread	
 Controller

Attacking	
 Queue

Attack	
 Plugin

Attacking	
 Module

Attacking	
 Analysis

Database

Web	
 Form

Attacking	
 Task

Worker	
 Thread

Worker	
 Thread

Worker	
 Thread

…

Finished	
 task

Attacking	
 Task

Attacking	
 Task

Queue	
 Controller

Attacking	
 Task

Trigger

Figure 6: A diagram showing SecuBat architecture as described in [8, Figure 3]

6.3. Crawling and Testing AJAX Applications
AJAX-basedWeb 2.0 applications rely on stateful asynchronous client/server

communication, and client-side runtime manipulation of the Domain Object
Model (DOM) tree. This not only makes them fundamentally different from
traditional Web applications, but also more error-prone and harder to test. In
order to detect a fault, a testing method should meet the following criteria [59,
60]:

• Reach the fault-execution statements: These statements cause the fault
to executed

• Trigger the error-creation: This causes the fault execution process to gen-
erate an incorrect intermediate state

• Propagate the error: This helps cause a detectable output error as a result
of propagating the incorrect intermediate state to the output

Compared to traditional Web applications, meeting the reach/trigger/prop-
agate criteria is more difficult for AJAX applications [13]. The general approach
in testing Web applications has been to request a response from the server (via

32

a hypertext link) and to analyse the resulting HTML. This testing approach
based on the page-sequence paradigm has serious limitations meeting even the
first reach condition on AJAX sites. Recent tools such as Selenium [61] use
a capture-replay style for testing AJAX applications. However, a substantial
amount of manual effort is required for testing.

Benedikt et al. [26] present VeriWeb, a tool for automatically exploring paths
of multi-page Web sites through a crawler and detector for abnormalities such as
navigation and page errors (which are configurable through plugins). In contrast
to traditional tools of this sort (e.g., spiders) that usually only explore static
links, VeriWeb can also automatically explore the dynamic contents of the Web
site, including form submission and execution of client-side scripts [26]. Veri-
Web uses SmartProfiles to extract candidate input values for form-based pages.
Broadly, user-specified SmartProfiles are sets of pairs of attributes and the value
for attributes. These attribute-value pairs are then used to automatically popu-
late forms. The specification of the SmartProfile is independent of the structure
of the Web site being tested. Although VeriWeb’s crawling algorithm has some
support for client-side scripting execution, it is not clear if it would be able to
be used for testing in AJAX applications.

The server side of AJAX applications can be tested with any conventional
testing technique. On the client side, testing can be performed at different levels.
Unit testing tools such as JsUnit can be used to test JavaScript on a functional
level. The most popular AJAX testing tools are currently capture-replay tools
such as Selenium,17 Sahi18, and Watir,19 which allow DOM-based testing by
capturing events resulting from user interaction. Such tools have access to the
DOM, and can assert expected UI behaviour defined by the tester and replay
the events.

However, significant manual effort is required on the part of the tester. These
include reaching the fault in the Web application automatically. Another chal-
lenge includes the fact that faulty inputs in AJAX applications can be triggered
by various UI events. Thus it becomes important to detect the data entry points
in an AJAX applications. In AJAX applications, the data entry points are usu-
ally forms in the DOM tree. Also, a faulty state can be triggered by incorrect
sequences of event executions. Thus, there is a need to generate and execute
different event sequences. Also, in AJAX, responses to any client-side event are
injected in the single-page interface and faults propagated to the DOM level.
These faults are also manifested at the DOM level. Thus, in order to analyse and
detect the propagated errors, access to the dynamic runtime DOM is required.

Mesbah and van Deursen propose [13] to use the JavaScript and AJAX
crawler Crawljax [62, 63] to infer a model of the navigational paths and states
by crawling through different UI states and exercising all user interface events
of an AJAX site. Crawljax is capable of detecting and firing events on click-

17http://seleniumhq.org/. This site was last accessed on January 31, 2013.
18http://sahi.co.in/. This site was last accessed on November 5, 2013.
19http://watir.com/. This site was last accessed on November 5, 2013

33

able elements on the Web interface. Crawljax can access client-side code and
identify clickable elements that result in a state change within the browser’s in-
built DOM. Once the state changes are discovered, a state-flow graph is created,
which comprises the states of the user interface and the (event-based) transi-
tions which may exist between them. A UI state change in an AJAX application
is defined as a change in the DOM tree structure caused either by server-side
state changes or client-side state changes. The paths to these DOM changes are
also recorded.

Once the different dynamic states have been discovered, the user interface is
checked against different constraints. These constraints are expressed as invari-
ants on the DOM tree which allows in checking any state.

Mesbah and van Deursen classify these invariants into three categories based
on a fault model, namely DOM-tree invariants, DOM-state invariants and application-
specific invariants. The generic DOM-tree invariants are described below.

Validated DOM: this invariant mainly makes sure that there is a valid DOM
structure (or valid HTML/JavaScript code) on every possible path of the
execution. The DOM tree obtained after each state change is transformed
into an HTML instance. A W3C validator acts as an oracle to ensure
there are no warnings or errors. This is important because, although most
browsers do not give errors as a result of slightly erroneous HTML code, all
HTML validators expect that the structure and content is present in the
HTML source code. In AJAX applications, however, changes are made on
the single-page user interface as a result of partially updating the DOM via
JavaScript. Since HTML validators cannot validate client-side JavaScript,
this is a problem.

Error messages in DOM: this invariant ensures that the states never contain
a string pattern which is the result of an error message. Error messages
should be detected automatically (e.g., client-side error messages such as
“404 Bad Request”, “400 Not Found” or server-side error messages such as
“500 Internal Server Error” and “MySQL Error”).

Other invariants: these include invariants for other things such as discovering
links, placing additional security constraints, and invariants which may
result in better accessibility anytime throughout the crawling process etc.

The DOM state machine invariants are described below.

No dead clickables: this invariant mainly ensures that there should be no
“dead” or “broken” physical links in an AJAX application. This is im-
portant because any clickable link in an AJAX application may actually
change the state by retrieving data from the server through JavaScript
in the background, which can also be broken. Such error messages are
usually masked by the AJAX engine and no dead links are propagated to
the user interface. The dead links/clickables can be detected by listening
to the client/server request/response traffic after each event.

34

Consistent back button: this is one of the more common problems in AJAX
Web applications (the existence of a broken back button in the browser).
Clicking the back button makes the browser completely exit the applica-
tion’s page. Through crawling, a comparison can be made between the
expected state in the graph with the state after the execution of the back
button and inconsistencies or errors can be automatically detected.

7. Random Testing and Assertion-based Testing of Web Services

Random testing of Web applications is a simple and well known technique in
which the application is tested by providing random inputs to the application.
It can be very effective in certain cases, e.g., Miller, Cooksey and Moore [64]
used random testing to detect errors in Mac OS applications, including 135
command-line Unix utilities and 30 graphical applications. They showed that
of the 135 command-line utilities which were tested, only 7% of them crashed
or hung, which was much better than previous studies. However, it is also well-
known [65] that in a lot of cases of random testing, the code coverage is low.
This is due to the fact there is a very small probability that all random numbers
will be generated correctly to explore all branches of the code. For example,
if there is a code block if (x==10) then.., and x is an integer, then there is
only 1/232 ≈ 2.33 ∗ 10−10 chance that the value of x generated randomly is 10.
The ineffectiveness of random testing in terms of coverage is also demonstrated
elsewhere [66], where a code coverage of only 39% is obtained by using this
technique. In other words, random testing does not perform exhaustive testing.
However, random testing can be useful if the software under test is complicated
that normal testing would require lots of resources, and when a low to moderate
coverage is not a concern. It can also be useful when special value conditions,
boundary conditions or invalid conditions need to be checked.

Assertion-based testing is a technique using assertions as an oracle to check
whether the test case has been successful or not. Assertions are very commonly
used as an oracle to check whether the application behaves correctly or not (e.g.,
checking expected value against the actual value received). In the following two
subsections, we discuss the application of random testing and assertion based
testing to Web services. In Section 7.3, we present Artemis, a random testing
frame for JavaScript applications.

7.1. Jambition: Random Testing to Web Service
The usage of Web Services has been growing rapidly during the last decade,

uncovering new business possibilities. These Web services have also had a very
broad and far-reaching influence on our daily life. In addition, the proliferation
of Third Generation (3G) and later mobile devices reinforces such growth and
leads to new business requirements which takes into account user mobility and
connectivity. As a consequence, the Web Service paradigm has to evolve to cope
with emerging issues such as:

• More users directly connected and directly interacting with Web Services,

35

• Users connected from any place to each other, and

• Increasing levels of complexities for growing business opportunities.

The validation of Web Services is a complex issue and testing solutions must
be provided in order to deal with the emerging complexity. For instance, sev-
eral Web Services involve logical dependencies between their operations. These
operations cannot be invoked independently or with any particular order. In
addition, a Web service may be a stateful service, which means that the results
of a particular operation may depend on the data from the previously executed
operations of the service. Similarly, the service logic may be dependent on user
inputs. As a result, validating these Web services requires developing compli-
cated and thorough test cases. In addition, these test cases should take into
account operation dependencies, the states of the service, and data to simulate
user inputs. As a result, if test cases were generated automatically, the overall
effort required to create a test suite would be greatly lowered, primarily be-
cause rigorous validation of Web services does not need to be done by following
the detailed program specifications. However, in order to ensure that a set of
test cases achieve adequate validation coverage, testing should rely on detailed
behaviour specification models [28].

Frantzen et al. [28] propose a tool called Jambition, which is a Java tool
developed to automatically test Web Services based on functional specifications.
In addition, the testing approach adopted by Jambition is random and on-the-
fly. This means an input is chosen randomly from a given set of inputs, which is
then passed to the service and some operation is invoked. The returned message
is then retrieved from the service. If the returned message is not allowed by the
formal specification, an error is reported, otherwise the next input is chosen and
the testing continues.

The on-the-fly approach of Jambition differs from more classical testing tech-
niques by not following the normal practice of generating a set of test cases
beforehand which are then executed on the system. On the contrary, test case
generation, test case execution, and test case assessment happen in lockstep.
As a result, this approach reduces the state space explosion problem faced by
several conventional model-based testing techniques. This is because if a tester
generates a test case beforehand, the tester needs to test for all possible combi-
nations of inputs and outputs returned. However, if a tester is generating and
developing test cases on-the-fly, then the tester deals with specific observed out-
put and hence can develop test cases more appropriately. Jambition was tested
on the eHealth Alarm Dispatcher service [28], and several types of errors were
detected during the specification importation and service validation stages. The
errors found during the specification importation stage are described below:

• Consistency errors in the models, such as a data type being incorrectly
referenced in the specification,

• Consistency errors between the models and the deployed service: for in-
stance, a parameter of a service operation was declared with different types
in the deployed service and in the model, and

36

• Incomplete service deployment problems.

The errors discovered by Jambition during service validation stage are:

• Violation of transitional guards: this means that, for example, an emer-
gency condition was not considered fatal even if the functional specification
mentioned it as fatal,

• Infinitely running operations or invalid operations, this means that some
operations would never terminate due to some defect or no message would
be returned by the service or the entire operation would be stopped, and

• Unreachable states and transitions: this means that some states or tran-
sitions could not ever be reached either due to the faults within the model
itself or missing features in the service.

7.2. Testing Web Services Choreography through Assertions
Another approach to test Web services has been proposed by Zhou et al. [27]

for specifications written in the Web Service Choreography Description Lan-
guage (WS-CDL),20 a W3C recommendation for Web Services choreograph.
The structure of a WS-CDL program is shown diagrammatically in Figure 7.
The root choreography is the entrance of the WS-CDL program, which is de-
fined uniquely. The specific logic for each choreography is depicted by activity
notation. Both the entrance and the behaviour of the choreographies are fixed.

The design and implementation of Web services-based systems require the
combination of different distributed services together to achieve the business
goal. Thus, it is essential to logically analyze and compose the complex behav-
iors of Web services. Service Oriented Architecture (SOA) meets this require-
ment by defining the Web Services compositional languages such as Business
Process modelling Language (BPML 21) and WS-BPEL 22. There are two mod-
els for Web services representation, namely, orchestration model and choreogra-
phy model. The orchestration model gives a local view from a particular business
part to handle interactions which allows a particular Web service to perform
various internal activities and communicate with other services. The choreog-
raphy model gives a global view regarding collaboration amongst a collection of
Web services. Typically such services involve multiple different organisations or
independent processes.

WS-CDL gives a global view on the collaboration among a collection of
services having multiple participants or organisations. WS-CDL is not an ex-
ecutable language, thus testing it is harder, but testing for Web service chore-
ographies is an effective mechanism to ensure the qualities of system designs [27].

20http://www.w3.org/TR/ws-cdl-10/. This site was last accessed on January 31, 2013.
21http://www.ebpml.org/bpml.htm. This site was last accessed on January 31, 2013.
22http://www.ibm.com/developerworks/library/specification/ws-bpel/. This site was

last accessed on January 31, 2013.

37

The automated testing approach described by Zhou et al. [27] is very similar to
concolic testing approach for testing Web applications (discussed in Section 9).
Assertions are used as an oracle in this approach. The dynamic symbolic ex-
ecution technique is applied to generate test inputs. Assertions are used as
test oracles. During the process of symbolic execution, a simulation engine for
WS-CDL is used to perform the execution of WS-CDL programs. At the end
of each execution, path constraints, which are generated as a result of symbolic
execution, are put into a SMT (Satisfiability Modulo Theories) solver. These
constraints are then solved to generate new input data and then further con-
straints are generated in the next simulation. The SMT solver is then used
to test whether the assertion predicates evaluate to true under current path
conditions for the test data, which further improves the quality of testing.

Automatically Testing Web Services Choreography with Assertions 139

to meet this demand by defining Web Services compositional languages such as
WSFL [24], BPML [3], WS-BPEL [4], WS-CDL [23], and WSCI [25] etc. There
are two representative models for Web Services composition. One is orchestration
model, and the other is choreography model. The orchestration model gives a
local view from one business part to handle interactions in which a given service
can perform its internal activities as well as communicate with other services.

On the other hand, the choreography model gives a global view on the collabo-
ration among a collection of services involving multiple different organizations or
independent processes. Web Services Choreography Description Language (WS-
CDL for short) is a W3C candidate recommendation for Web Services choreo-
graph.

Fig. 1 depicts the structure the WS-CDL program. The root choreography
is the entrance of the WS-CDL program and is defined uniquely. The activity
notation defines specific logic for each choreography. In other words, both the
entrance and the behavior of the choreographies are fixed.

Root
Choreography

Information Type
Definition

Role Type
Definition

Definition
Notation

Choreography A

Choreography B

Definition
Notation

Sequence

Sequence

Parallel

Perform

Interaction

Assign

Interaction

Interaction

Assign

Executable
Block

Definitive
Block

Fig. 1. WS-CDL Program Structure

The analysis of WS-CDL programs is important for the development of sys-
tems. If bugs can be removed as early as possible, especially at the design phase,
the quality of systems can be improved while costs can be saved at the de-
ployment phase. As its intuitive name indicates, WS-CDL is not an executable
language, which makes it difficult to test, but testing for web service choreogra-
phies is an effective mechanism to ensure the qualities of system designs.

Figure 7: A diagram showing the program structure of a WS-CDL program as described
in [27, Figure 1]

The analysis of WS-CDL programs is important for the development of Web
Services systems. It is also important that the defects are removed as early
as possible from these systems, as early defect detection improves quality and
cost-effectiveness of the systems. The testing approach proposed by Zhou et
al. [27] is shown in Figure 8.

A WS-CDL program is firstly processed by a custom parser. Since there is an
entrance unit for a WS-CDL program, a random value is used initially to drive
the choreography. The simulation program performs the dual tasks of simulating
the program behaviours and recording the choreography state. Additionally,
at the end of every simulation, the symbolic values are analysed by means of
symbolic execution. The different predicates which appear in different branches

38

140 L. Zhou et al.

In this paper, we present a new approach to automatically testing WS-CDL
programs. The basic idea is to automate test data generation based on the pro-
gram structure according to the path coverage criteria and then use the generated
data to execute the program automatically. The dynamic symbolic execution
technique [17,7] is adopted to automate test data generation which guides the
execution of programs. An assertion statement which is a language extension to
the standard WS-CDL specification is developed to express the intention of the
program by designers. To facilitate the automated testing of WS-CDL, we de-
veloped a simulation engine [27] for WS-CDL programs. However, one difficulty
in testing WS-CDL is the parallel structure since the same test data may lead to
different behaviors of the concurrent program. To handle this issue, we propose
a practical method to test programs with parallel structures.

Choreography
Model

Choreography
Parser

Test InputInitial
Data

Simulation
Engine

Symbolic
Execution

Constraint
Collection

SMT
Solver

Generated
Solution

Assertion
Testing

Assertion
Proof

Fig. 2. Approach Outline

Fig. 2 demonstrates our approach. The WS-CDL program is firstly processed
by the parser which is developed by ourselves. Since WS-CDL has an entrance
unit, a random value is put into this unit to drive the choreography initially.
Then, the simulation engine is performed to simulate program behaviors and
record the choreography state at the same time. Meanwhile, the symbolic values
are analyzed at the end of every simulation by means of symbolic execution. The
predicates appeared in path branches are collected which make up the path con-
straint of the current program path. With a SMT solver (Z3 [29] is employed in
our implementation) which solves the path constraint by negating the last term
of the current path predicate, we can get a solution for the involved variables.
This solution is taken as new input for service choreographies to guide the next
simulation. The testing process terminates when all the paths in choreographies
are traversed by the simulation engine. The assertion is designed to test whether

Figure 8: A diagram showing the testing approach for a WS-CDL program as described in [27,
Figure 2]

in any simulation are collected together and these predicates then form a Path
Constraint (PC). The SMT solver Z3 [67] is used. Z3 solves the path constraint
by negating the last term of the current path constraint, and the process is
continued until a solution for the variables in the path constraint is obtained.
The solution obtained is taken as new input for service choreographies to process
the next simulation. The testing process finishes when all the branches in the
choreography have been traversed by the simulation engine.

The assertions are designed to test whether the current program path or
statement satisfies some property. Two methods were designed to generate
assertions [27]. The first method uses the current generated test/input data
to check whether an assertion is satisfied. However, this method only tests a
given assertion using the current data, thus, even if the current data makes the
assertion true, there may be some other data which will make the assertion false.
The second method enhances the assertion testing where symbolic execution is
used along with a constraint solver to achieve a proof that can decide whether
the assertion is satisfied under the execution of current path. This process is
continued for all the paths for which a given assertion can be tested. When the
assertion is satisfied for all the paths in the program, then the assertion is proved
to be true for service choreographies. This technique is similar to the one used
for bounded model checking proposed in [68]. The main goal in Bounded Model
Checking is to search for a counterexample in a certain number of executions.
ssThe length of the number of executions has an upper bound of some integer,
k. If no bug/error is found in k executions, then the value of k is increased
progressively until the testing technique can detect the presence of a bug, or
the program becomes intractable, or some pre-known upper bound, known as
the Completeness Threshold is reached. An experiment was also performed by

39

Zhou et al. [27] for five WS-CDL programs to mainly test path coverage and
the number of violated assertions. It was found out that 20% of the assertions
resulted in violations and the path coverage for feasible paths was roughly 75%.

7.3. Artemis: a Feedback-directed Random Testing Framework for JavaScript
Applications

In a typical Web application development environment, test frameworks such
as Selenium, Sahi and Watir enable capture-replay style testing of Web applica-
tions. However, test cases still need to be manually constructed by developers
and testers. Given JavaScript’s dynamic event-driven nature, it may be difficult
to achieve a high coverage and construct test cases that exercise a particular
path through execution.

To alleviate the burden of manual test case construction and achieve a high
code coverage, Artzi et al. propose Artemis [29], a random testing framework
for guided, automated test case generation. The Artemis framework consists of
instantiations of three types of main components: (1) an execution unit that
models the browser and the server, (2) an input generator that generates new
input sequences, and (3) a prioritizer that provides feedback to guide the ex-
ploration of the JavaScript application’s state space.

The Artemis framework starts at an initial seed URL and iteratively gen-
erates, prioritizes and executes test inputs. The execution unit triggers events
using test inputs, maintains coverage information and records program state and
test failures and exceptions. The prioritizer computes the priority of all test in-
puts and reorders them accordingly. If the program state is not yet visited, the
input generator then generates new test inputs in one of three ways.

• It can create an equal-length event sequence by modifying the last event,

• It can produce a longer event by extending the current test input with a
new event, or

• It can start executing at a different URL.

The generation of new inputs is guided by feedback provided by the prioriti-
sation strategies and input generation strategies. Artemis define three prioriti-
sation strategies. The default strategy assigns the same priority to all event se-
quences. The coverage-based strategy assigns priority to event sequences based
on the product of coverage of all events in the sequence. The third strategy
priorities event sequences by the proportion of written and read variable and
parameters in a sequence.

Artemis defines two input generation strategies. The default strategy chooses
reasonable default values for parameters. The advanced strategy keeps track of
constants while an event is being executed. Such constants are then used as new
test inputs. Such a strategy may be more targeted than the default strategy
as new inputs are drawn from constants, which have already appeared during
execution.

40

Based on the above prioritisation and input generation strategies, four feedback-
directed input generation algorithms are defined. These include the simple al-
gorithm events that uses the default strategies, to the most sophisticated algo-
rithm, all, which uses all three prioritisation strategies and the advanced input
generation strategy.

An experiment with 10 JavaScript programs is conducted to evaluate the
effectiveness of Artemis. The evaluation shows that the feedback-directed algo-
rithms (1) improves code coverage significantly over the baseline, which is not
feedback-directed and (2) uncovers significantly more errors in the programs
under test.

The experiment also demonstrates the efficiency of the Artemis framework.
As Artemis does not employ sophisticated, expensive constraint-solving algo-
rithms (like that used in Kudzu [16], discussed in Section 9.4), it only takes at
most 2 minutes to generate 100 test cases with all the input generation algo-
rithms. In comparison, a 6-hour timeout is applied for Kudzu.

7.4. JSContest: Contract-Driven Random Testing of JavaScript
Heidegger and Thiemann propose JSConTest [30], a random testing frame-

work, that includes a contract language for JavaScript that allows a programmer
to annotate a JavaScript program with functional contracts. The language sup-
ports the following contracts.

• The traditional type-based contracts, such as /** (object) → bool */.

• Composite contracts that are built from primitive ones and enriched by
static analysis information. Such information, including @numbers, @strings
and @labels, can be used as guide to collect information from the anno-
tated function.

• Dependencies that may exist among function parameters. Such depen-
dencies can be used to more efficiently find a counterexample.

• Annotations that control the generation of assertions and tests. These
include ~noAsserts, which specifies that no assertions should be generated
for a given contract, ~noTests, which specifies that no contracts should
be added to the test suite, and #Tests:i, which specifies the number of
tests to be generated for a given contract.

A simple JavaScript program with two contracts are shown in Figure 9 below.
JSContest relies on annotations such as @numbers to guide the generation of

random tests in order to improve the possibility of finding a counterexample.
JSConTest also includes a runtime monitoring tool for contracts that in-

serts assertions into function bodies and checks whether function execution is
successful or not.

The framework is evaluated on a custom JavaScript implementation of a
Huffman decoder. Mutation testing techniques are employed to generate mutant
programs with a small number of mutation operators. Out of the 716 generated

41

1 /** int → int */
2 function f(x) { return 2 * x; };
3

4 /** (int , int) → bool */
5 function p(x, y) {
6 if (x != y) {
7 if (f(x) == x+10) return "true"; // error
8 };
9 return false;

10 };

Figure 9: A simple JavaScript program with contracts [30, Figure 1].

mutants, about 88% are rejected by the JSContest test suite. Such a high
mutant killing percentage suggests that JSContest is effective at detecting type
errors.

8. Fuzz Testing

Fuzz testing is an effective technique for finding security vulnerabilities in
software by testing the application with boundary values, invalid values or values
that are rarely used. Fuzz testing tools create test data by (1) applying random
mutations to well-formed inputs of a program or (2) by generating new test data
based on models of the input. Fuzz testing can in generally be divided into two
categories, namely, white-box fuzz testing and black-box fuzz testing.

The main advantage of fuzz testing is that testing is focussed on using spe-
cial values as input to the program under test and thus helps it in detecting
critical, exploitable bugs which would probably not be detected by model-based
approaches. Additionally, the overall approach to testing is quite simple (it
is essentially random testing combined with symbolic execution) and complete
(i.e., it tries to cover as many branches as possible).

In Section 8.1 we introduce the notion of white-box fuzz testing, and present
several techniques to improve its efficiency. In Section 8.2, FLAX, a black-box
fuzz testing framework for JavaScript, is presented to demonstrate the applica-
tion of such techniques in Web application testing.

8.1. White-box Fuzz Testing
White-box fuzzing [31] techniques combine fuzz testing with dynamic test

generation [65, 69]. White-box fuzzing executes the program under test with
an initial, well-formed input, both concretely and symbolically. During the
execution of conditional statements, symbolic execution creates constraints on
program inputs. Those constraints capture how the program behaves when fed
these inputs, and satisfying assignments for the negation of each constraint de-
fine new inputs that exercise different control paths. White-box fuzzing repeats
this process for the newly created inputs, with the goal of exercising many differ-
ent control paths of the program under test and finding bugs as fast as possible

42

using various search heuristics. In practice, the search is usually incomplete
due to a large and infeasible number of control paths and because the precision
of symbolic execution, constraint generation and solving is inherently limited.
However, it is a commonly used approach in detecting program vulnerabilities
in large applications.

The current effectiveness of white-box fuzzing is limited when testing appli-
cations with highly-structured inputs, such as compilers and interpreters. The
inputs for these applications are processed in stages, such as lexing, parsing
and evaluation. Due to the large number of control paths in early processing
stages, white-box fuzzing, in the presence of a well-formed input set, rarely pro-
ceeds beyond these initial input processing stages. For instance, there are many
possible sequences of blank spaces, tabs and carriage returns separating tokens
in most structured languages, each of which corresponds to a different control
path in the lexer. In addition to path explosion, symbolic execution may fail
in early processing stages. For instance, lexers often detect language keywords
by comparing their pre-computed, hard-coded hash values with the hash val-
ues of strings read from the input. This effectively prevents symbolic execution
and constraint solving from ever generating input strings that match the key-
words since hash functions cannot be inversed (i.e., if we have a constraint x =
hash(y) and a value of x is given, then we cannot compute y which satisfies the
constraint).

One possible approach to overcoming this problem is proposed in [31], where
the algorithm records an actual run of the software under test on a well-formed
input, symbolically evaluates the recorded trace and records the different con-
straints on inputs, which shows how the program behaves under the inputs. The
collected constraints are then negated one by one and solved with a constraint
solver, producing new inputs that allow the exploration of different control paths
in the program. This process is repeated with the help of a code-coverage max-
imising heuristic designed to find defects as fast as possible. This approach
employs dynamic test generation techniques such as DART [65] and EXE [69],
which are introduced in Section 9.

For example, for the symbolic execution of the code fragment if (x == 20),
the initial value of the variable x is set to 5, then the execution of the program
leads to the constraint x != 20. This constraint is then negated and solved,
which results in the new constraint x = 20, which ensures the if statement is
executed and further constraints are collected. This allows to exercise and test
additional code for security bugs, even without specific knowledge of the input
format. Furthermore, this approach automatically discovers and tests corner
cases where programmers may fail to properly allocate memory or manipulate
buffers, leading to security vulnerabilities.

This algorithm is implemented in the Microsoft white-box testing tool SAGE
(Scalable, Automated, Guided Execution) [31], which is a tool employing x86
instruction-level tracing and emulation for white-box fuzzing of arbitrary file-
reading Windows applications.

SAGE was used for testing several windows applications. Without any

43

format-specific knowledge, SAGE detects the MS07-017 ANI vulnerability,23,
which was missed by extensive black-box fuzzing and static analysis tools. SAGE
has also discovered more than 30 new bugs in large Windows applications in-
cluding image processors, media players, and file decoders.

Another approach to solve the limited coverage problem due to white-box
fuzz testing is proposed by Godefroid, Kiezun and Levin [33], which enhances
white-box fuzzing when applying it to complex structured-input applications
with a grammar-based specification of valid inputs. A novel dynamic test
generation algorithm is proposed where symbolic execution directly generates
grammar-based constraints whose satisfiability is checked using a custom grammar-
based constraint solver. The algorithm is implemented and evaluated on a large
security-critical application, the JavaScript interpreter of Internet Explorer 7
(IE7). Results of these experiments show that grammar-based white-box fuzzing
explores deeper program paths and avoids dead-ends due to non-parsable inputs.
Compared to regular white-box fuzzing, grammar based white-box fuzzing in-
creased coverage of the code generation module of the IE7 JavaScript inter-
preter from 53% to 81% while using three times fewer tests [33]. Moreover, the
grammar-based constraint solver can complete a partial set of token constraints
into a fully-defined valid input, hence avoiding exploring many possible non-
parsable completions. By restricting the search space to valid inputs, grammar-
based white-box fuzzing can exercise deeper paths, and focus the search on the
harder-to-test, deeper processing stages.

8.2. FLAX: a Black-box Fuzz Testing Framework for JavaScript
Saxena et al. [32] have adopted a hybrid technique which is a combination

of dynamic taint analysis [70] and fuzz testing. Dynamic taint analysis basi-
cally executes a program and then determines which combination of program
paths are affected by user inputs or other predefined taint sources. Dynamic
taint analysis can can also be used to detect inappropriate user input values
during a program execution [71]. For example, dynamic taint analysis can be
used to prevent attacks caused as a result of an attacker entering malicious
lines of code into the user input fields, which may result in the user (of the
Web application) inadvertently executing some undesirable code (also known as
code injection attacks), by monitoring whether user input is executed [72, 71].
However, dynamic taint-tracking alone can not determine if the application has
been sufficiently validated against unsafe data before using it, especially when
parsing and validation checks are syntactically indistinguishable. If an analysis
tool treated all string operations on the input as parsing constructs, then the
validation checks will not be identified and the taint analysis will result in an
enhanced number of false positives [32]. Conversely, if the analysis treats any
use of unsafe data which has been parsed and/or passed through a validation

23http://technet.microsoft.com/en-us/security/bulletin/ms07-017. This site was last
accessed on January 31, 2013.

44

construct as safe, it will probably miss many bugs, which will result in false
negatives.

Saxena et al. [32] use their testing technique to detect client-side valida-
tion (CSV) vulnerabilities. These vulnerabilities primarily arise as a result of
not doing enough validations on the unsafe data/input used at the client-side
(usually written in JavaScript) of Web applications. This testing technique
is light-weight, efficient, and have no false positives. Saxena et al. [32] incor-
porate this technique into a prototype, called FLAX. This tool also scales to
real-world applications. The dynamic analysis approach proposed in FLAX [32]
to discover vulnerabilities in Web applications is called taint enhanced blackbox
fuzzing. This technique overcomes the above-mentioned limitations of dynamic
taint analysis by using random fuzz testing to generate test cases that concretely
demonstrate the presence of a CSV vulnerability. This eliminates the problem
of false positives and false negatives which would otherwise result from the usage
of a purely taint-based analytic tool. In the preliminary study comprising 40
real-world and popular JavaScript-intensive programs, it was found that FLAX
was able to discover 11 CSV vulnerabilities in the wild. These JavaScript-based
programs included several third-party iGoogle gadgets, Web sites, AJAX ap-
plications and third-party libraries. These vulnerabilities were unknown prior
to the experiments. These findings also confirmed [32] that CSV vulnerabilities
are both conceptual and widespread in Web applications today.

9. Concolic Web Application Testing

Concolic (concrete and symbolic) testing techniques automate test input
generation by combining the concrete and symbolic (concolic) execution of the
software under test. Most test input generation techniques use either concrete
execution or symbolic execution that builds constraints and is followed by a
generation of concrete test inputs from these constraints [73]. Concolic testing,
on the other hand, combines both these techniques, which take place simulta-
neously. The goal in concolic testing is to generate different input data which
would ensure that all paths of a sequential program of a given length are cov-
ered. The program graphs, which depict program statements and the program
execution, are provided as inputs.

In Section 9.1, we introduce concolic execution and testing in general, mo-
tivating its effectiveness through a small example, and present a number of
well-known concolic testing tools.

PHP is a very popular Web application programming language. It is a script-
ing, interpreted language that is widely used to create server-side applications.
JavaScript is a widely-used, client-side scripting language found in virtually all
Web applications. Their popularity and dynamic nature make their thorough
testing difficult yet highly critical. In Sections 9.2 to 9.4, we present three con-
colic testing approaches that generate tests and defects detection for PHP and
JavaScript applications, exploiting string- and path-based constraints, respec-
tively. The benefits of concolic testing, especially on dynamic languages such as
PHP and JavaScript, can be evidently demonstrated through case studies.

45

9.1. Concrete, Symbolic Execution
Concolic testing uses concrete values as well as symbolic values for input and

executes a program both concretely and symbolically, called concolic execution.
The concrete part of concolic execution is where the program is normally ex-
ecuted with concrete inputs, drawn from random testing. The symbolic part
of concolic execution collects symbolic constraints over the symbolic input val-
ues at each branch point encountered along the concrete execution path. At
the end of the concolic execution, the algorithm computes a sequence of sym-
bolic constraints corresponding to each branch point. The conjunction of these
symbolic constraints is known as path constraints. More formally, a path con-
straint (PC) is defined as the conjunction of conditions on variables as a result
of executing the Web application with concrete values. All input values that
satisfy a given path constraint will cover the same execution path. Concolic
testing first generates random values for primitive inputs and the NULL value
for pointer inputs. The algorithm then executes the program concolically in a
loop. At the end of execution, a symbolic constraint is negated in the original
path constraint (which contains a conjunction of symbolic constraints) and the
alternative branches of the program is explored. The algorithm is continued
with the newly generated concrete inputs for the new path constraint. As a
result, concolic testing combines random testing and symbolic execution, thus
overcomes the limitations of random testing, such as the inefficient and ad-hoc
nature of the test cases generated [64], the difficulty in traversing the different
paths in a program, redundant test input data which lead to the same observ-
able program behaviours [74], and the low coverage obtained (due to the random
nature of the input data) [65].

In order to obtain a better understanding of how these concolic testing tech-
niques work for a program, we could consider the code block shown in Figure 10
below.

1 int f(x) {
2 return 2*x;
3 }
4 int h(x,y) {
5 if (x != y)
6 if (f(x) == x + 10)
7 error();
8 }

Figure 10: A simple pseudo procedural program.

Since it is very difficult with random testing or manual testing to generate
input values that will drive the program through all of its different execution
paths, Concolic testing is better suited to obtaining the desired program cover-
age because it is able to dynamically gather knowledge about the execution of
the program in a directed search.

In the above code block, a concolic testing technique assigns random values
to both x and y in the function h. Assume that the concrete values assigned to

46

x and y are x=0 and y=1. With these assignments, the inner if statement is
not reached (since f(x)= 0 and x+10 != 10). Along with the normal concrete
execution, the predicates x0 6= y0 and 2 ∗ x0 = x0 + 10 are formed on-the-fly
according to how the conditionals evaluate, In this case, x0 and y0 are symbolic
variables which represent the memory locations of the concrete variables x and
y. The expression 2∗x0, or f(x) is defined through an inter-procedural dynamic
tracing of symbolic expressions.

Sometimes, the path constraints may be too complicated for a constraint
solver to generate concrete values to satisfy the constraint. In such cases, some
symbolic constraints are replaced with concrete values. Thus, concolic testing
is complete only if a given oracle can solve all constraints in a program, and
the length and the number of paths is finite [73]. There are a few concolic
testing tools which are commonly used. The most popular ones are EXE [69],
DART [65], and CUTE [74].

EXE [69] is an effective bug finding tool that automatically generates inputs
with the aim of crashisg real code. Instead of running code on manually or
randomly constructed input, EXE runs on symbolic inputs, initialised with a
random input. EXE tracks the symbolic constraints for each memory location.
If a statement uses a symbolic value, EXE does not execute it as a normal
statement. Instead the constraint is added as a conjunction to the list of path
constraints. If a symbolic execution is checked conditionally by a program,
EXE forks execution, and the expression is constrained to be true on the true
branch, and false on the other branches. Since EXE takes into account all the
possible values along a path, it can force the program to be executed down
any feasible program path, and at statements or along program points where
dangerous operations (e.g., a pointer dereference) are allowed/performed, it can
identify whether the current path constraints would allow any value that causes a
defect [69]. When a path terminates or hits a bug, EXE automatically generates
a test case by solving the current path constraints to find concrete values using
its constraint solver, the Simple Theorem Prover (STP) [75]. For an assert
statement, EXE can reason about all possible input values on the given path
that may cause the assert to fail. If the assert does not fail, then either, (1) no
input on this path can cause it to fail, (2) EXE does not have the full set of
constraints or (3) there is a bug in EXE.

The ability to automatically generate concrete inputs to execute program
paths has several features. First, EXE can test all paths/branches of a program
exhaustively (given enough time), which is impossible to do in cases of manual
or random testing. Second, EXE generates actual attacks. Third, the presence
of a concrete input allows the user to easily discard error reports due to bugs
in EXE or STP: the user can confirm the error report by simply rerunning
an uninstrumented copy of the checked code on the concrete input to verify
that it actually hits the bug (both EXE and STP are sound with respect to
the test cases generated, and therefore false positives can only arise due to
implementation bugs in EXE and/or STP).

Proper customisation makes STP often 100 times faster than more tradi-
tional constraint solvers while handling a broader class of examples. Crucially,

47

STP efficiently reasons about constraints that refer to memory using symbolic
pointer expressions, which presents a few challenges. For example, given a con-
crete pointer a and a symbolic variable i with the constraint 0 ≤ i ≤ n, the
conditional expression “if (a[i] == 10)” is essentially equivalent to testing
all the different values of a[i], where i is between 1 and 10. Thuus, we are
essentially testing a big disjunction of different possible conditions which may
be true: “if (a[0] == 10 ‖ . . . ‖ a[n] == 10)”. Similarly, an assignment a[i]
= 42 represents a potential assignment to any element in the array between 0
and n.

Directed Automated Random Testing (DART) [65], similar to EXE [69], is
used for automatically testing software and is composed of three main tech-
niques, (1) automated extraction of the interface of a program with its external
environment using static source-code parsing, (2) automatic generation of a
test driver for this interface that performs random testing to simulate the most
general environment the program can operate, in and (3) dynamic analysis of
how the program behaves under random testing and automatic generation of
new test inputs to direct systematically the execution along alternative program
paths.

CUTE [74] stands for Concolic Unit Testing Engine. CUTE implements a
solver so that the test inputs are generated incrementally for both arithmetic and
pointer constraints. This solver performs several optimisations [74], which help
to improve the testing time by several orders of magnitude. The experimental
results demonstrated in [74] confirm that CUTE can efficiently explore branches
in a C program and achieve high branch coverage. CUTE was also shown
to be efficient at detecting software bugs that result in assertion violations,
segmentation faults, or infinite loops [74].

The methodology used in CUTE that makes it efficient to test programs writ-
ten in C efficiently is based on separating pointer constraints from the simpler
arithmetic constraints. Additionally, in order to make the entire symbolic exe-
cution light-weight and ensure that the constraint solving procedure is tractable,
pointer constraints are kept simple. The logical map, which keeps tracks of the
different pointer relations, is used to simplify and replace complex symbolic
pointer constraints with simpler symbolic pointer constraints. For example, if p
is an input pointer to a struct with a field f, then a constraint on p→ f will
be reduced to a constraint on f0 , where f0 is is the symbolic value representing
the constraint p → f . Although this over-simplification of complex symbolic
pointer expressions may give rise to some approximations that do not precisely
capture all executions, the original relationship between the different pointers
(as defined in the logical map) is still maintained, and the approximations are
also sufficient for testing purposes. Furthermore, this simplification of pointer
constraints results in pointer constraints of the form x = y or x 6= y, where
x and y are either symbolic pointer variables, or the special C constant NULL.
The advantage of reducing complex pointer constraints to simpler constraints
of the above-mentioned form is that such simple constraints can be solved effi-
ciently [74].

48

9.2. A String-based Concolic Testing Approach for PHP Applications
Wassermann et al. [35] develop a concolic testing-based framework for de-

tecting SQL injection defects through dynamic test input generation by ma-
nipulating string operations in PHP. String operations are modeled using finite
state transducers. Constraints are then used to generate new string values. An
algorithm is then used to validate whether a string constitutes an SQL injec-
tion attack. Finally, backward slices are dynamically constructed at runtime to
enable testing beyond unit level.

Scripting languages such as PHP support meta-programming capabilities
and hence are more dynamic. For instance, PHP allows function call names and
variable names to be constructed dynamically, from user inputs. The presence
of such dynamic language features make it very hard for static analysis tools
to analyze PHP programs. The approach [35] tackles this challenge by using
a concolic approach that records variable values in concrete execution and use
them as constraints to generate new inputs symbolically.

For example, the PHP program in Figure 11 contains an unsafe database call:
on line 18 the value of variable userid is used without sanitisation, making it
vulnerable to SQL injection attacks.

1 isset ($_GET [’userid ’]) ?
2 $userid = $_GET [’userid ’] : $userid= ’’ ;
3 if ($USER[’groupid ’]!=1) {
4 // permission denied
5 unp_msg($gp_permserror);
6 exit;
7 }
8 if ($userid == ’’) {
9 unp_msg($gp_invalidrequest);

10 exit;
11 }
12 $userid = "00".$userid;
13 if (! eregi(’00[0 -9]+’, $userid)) {
14 unp_msg(’You entered an invalid user ID.’);
15 exit;
16 }
17 $getuser = $DB ->query("SELECT * FROM"
18 . "’unp user’ WHERE userid=’$userid ’");
19 if (!$DB ->is_single_row($getuser)) {
20 unp_msg(’You entered an invalid user ID.’);
21 exit;
22 }

Figure 11: An example PHP program from [35, Figure 1] that contains an SQL injection
vulnerability.

In this framework, new string-typed test inputs are generated from current
string values through the use of constraints. The generation of such constraints

49

are enabled by modeling string operations and type casts as finite state trans-
ducers (FSTs), finite state machines with an input tape and an output tape. As
in concolic testing, constraints are generated, solved and inverted to generate
new test inputs to cover different paths of the PHP program under test.

Focused on detecting SQL injection vulnerabilities, this framework makes
use of Grasp [76], a modified PHP interpreter, as test oracle. Grasp performs
character-level tainting, allowing security policies, in this case those related to
SQL injections, to be defined. Symbolic execution and FSTs are used in combi-
nation to record and generate new query strings that are potentially attacks.

The state space of any non-trivial program may be too large for a concolic
testing technique to handle efficiently. Sometimes, significant portions of a pro-
gram’s execution, such as logging, is not relevant to the properties of interest.
This problem is alleviated [35] by analysing program points that are (directly
or indirectly) relevant to possible failure, in a backward manner. Starting at
function calls that send a query to the database, other functions where this
call occurs are iteratively added. Control dependency and data dependency
are resolved by maintaining a stack trace of function calls, and by examin-
ing symbolic values during execution. Approximately this process constructs
a backward program slice, and is shown to dramatically reduce the number of
constraints generated, sometimes by several orders of magnitude.

The proposed framework is implemented and evaluated on three PHP Web
applications with know SQL injection vulnerabilities: Mantis 1.0.0rc2, Mambo
4.5.3 and Utopia News Pro 1.3.0. The concolic testing framework manages to
detect SQL injection vulnerabilities in all three applications using at most 23
inputs. In the case of Mantis and Mambo, as few as 4 and 5 inputs are required
respectively to detect a vulnerability.

9.3. Apollo: a Path-based Concolic Testing Framework for PHP Applications
Artzi et al. [34] propose a concolic testing techniques for PHP Web appli-

cations. The path constraints which are generated from symbolic execution are
stored in a queue. The queue is initialised with the empty path constraint. A
constraint solver is then used to find a concrete input that satisfies a path con-
straint taken from the queue. The program is executed concretely on the input
and tested for failures. The path constraint and input for each detected failure
are merged into the corresponding bug report. Now the program is executed
symbolically on the same concrete input value (chosen by the constraint solver)
and different path constraints are obtained (i.e., a boolean expression with a
conjunction of conditions which are true when the application is executed with
an input). New test inputs are then created by solving modified versions of
the path constraint obtained. If a solution exists to an alternative path con-
straint which corresponds to an input, then the execution of the program will
be completed along the opposite branch [34].

In order to obtain the different modified versions of the path constraint, the
last condition in the original path constraint is removed and the last conjunct
in the new path constraint is negated. For example, assuming the original path
constraint obtained from initial concrete input is the following:

50

x ∧ y ∧ z

Then, the additional path constraints are:

x ∧ ¬y ∧ ¬z, x ∧ ¬y and ¬x

The following PHP program in Figure 12 illustrates how Apollo can be
applied to testing PHP applications.

1 <?php
2 make_header (); // print HTML header
3 if(!isset($_GET["page"])) $page = 0;
4 else $page = $_GET["page"];
5 if($_GET["page2"] == 1337) {
6 require("printReportCards.php"); //a separate PHP

application
7 die(); // terminate the PHP program
8 }
9

10 if($_GET["login"] == 1) validateLogin ();
11

12 switch ($page) {
13 case 0: require("login.php"); break;
14 case 1: require("TeacherMain.php"); break;
15 case 2: require("StudentMain.php"); break;
16 default: die("Incorrect page number. Please verify

.");
17 }
18

19 make_footer (); // print HTML footer
20 ...
21 ?>

Figure 12: A simple PHP program from [34, Figure 1] that contains some defects.

The program execution starts with the empty input, with the variable page
being set to the initial value 0 after line 3 of the program execution. Since
the variable login is not defined, the function validateLogin() (not shown
here) is not invoked, generating the following path constraint (PC), where
NotSet(page) is due to the conditional statement in line 3 being executed:

PC : NotSet(page) ∧ page = 0 ∧ page2 6= 1337 ∧ login 6= 1

This original path constraint is then updated by removing the last constraint
and negating the last constraint from this updated path constraint. Thus, in
this case, 4 new path constraints are generated (PC1 to PC4).

51

PC1 : NotSet(page) ∧ page = 0 ∧ page2 6= 1337 ∧ login = 1

PC2 : NotSet(page) ∧ page = 0 ∧ page2 = 1337

PC3 : NotSet(page) ∧ page 6= 0

PC4 : Set(page)

Similarly, these constraints are solved by the constraint solver that enables
exploration of different paths of the program execution. For example, for the
path constraint PC3, the constraint solver may assign any value to “page” other
than 0.

9.3.1. Minimisation of Path Constraints
A defect report, or a bug report contains a set of path constraints leading to

inputs exposing the failure. A lot of dynamic test generation tools [65, 74, 69]
present the entire input to the user without an indication of which subset of the
input is responsible for the failure. In order to remove the irrelevant constraints,
path constraints can be minimised [34].

In order to do this, the intersection of the different path constraints exposing
a failure are taken for a given defect report. Iteratively, each condition from
the intersection of the path constraints is removed one by one. If the shorter
path constraint (after removing the condition) does not expose the failure, the
constraint is added back as it is required for exposing the failure. From the min-
imised path constraint, the algorithm produces a concrete input that exposes
the failure. Although the algorithm does not guarantee that the algorithm re-
turns the shortest path constraint necessary to expose the failure, the algorithm
is simple, fast and effective.

For example, for the two path constraints PCa and PCb, which expose the
same failure and the constraints are:

PCa : x ∧ y ∧ z ∧ a
PCb : ¬x ∧ y ∧ z

Taking the intersection of these two path constraints, the new path constraint
PCnew is, PCnew : y ∧ z. The algorithm the takes out conditions from the
constraint one by one. If the remaining constraint exposes the failure, that
condition is removed and PCnew is updated, otherwise it is kept. The algorithm
terminates when there are no more conditions which can be removed.

9.3.2. Implementation Technique
Artzi et al. [34] also proposed a tool to implement the technique proposed

by them. The architecture of the framework is shown in Figure 13. As shown
in the diagram, the framework Apollo comprises three major components, the

52

Executor, the Input Generator and the Bug Finder. The Executor carries out
the testing of a particular PHP file(s) with a given input. The Executor ensures
the database is in an appropriate state before each cycle of an execution. The
Executor has two sub components, namely:

• The Database Manager: This component, as the name suggests, is respon-
sible for initialising a database for use during the execution stage by the
PHP application. The state of the database is also restored after each
execution.

• The Shadow Interpreter: This component is mainly a modified PHP inter-
preter responsible for storing the different path constraints (PC) generated
throughout the program execution. This component also stores different
positional information regarding the input.

Similarly, the Bug Finder uses an oracle to find HTML failures, keeps a
track of the different bug reports and minimizes the path constraints which
are responsible for a particular fault. The Bug Finder mainly comprises three
components, which are:

• The Oracle: The oracle is basically a heuristic which is used to find defects
in any given program. In the case of PHP applications, the oracle is
designed to detect HTML failures (such as invalid HTML syntax) in the
program output.

• The Bug Report Repository: This is responsible for storing all the bug
reports containing a detailed description of the different HTML failures
and execution failures found during program execution.

• Input Minimizer: The Input Minimizer takes a given bug report as the
input and finds the smallest set of path constraints on the input parameters
required to produce the same (type of) faults as those described in the
bug report.

The Input Generator contains the main implementation of the algorithm
for obtaining a collection of path constraints and minimising them. The Input
Generator comprises the following three sub-components:

• The Symbolic Driver: This component generates new path constraints and
also selects a path constraint (according to the state of the priority queue)
to be solved for a given execution.

• The Constraint Solver: This is mainly used to compute the assignment of
values to input parameters that satisfies a given path constraint (i.e., it is
used to find solutions to a path constraint).

• The Value Generator: This component generates values for input param-
eters that are not constrained. The values are either randomly generated
or constant values extracted from the program source code.

53

Figure 13: The architecture of Apollo as shown in [34, Figure 4].

This technique [34] gives a practical example of how concolic testing can
be applied to testing Web applications. The algorithm used for minimisation
of path constraints also helps minimize the time taken for the testing process.
Additionally, the testing process is complete as the testing process continues
until all the branches are covered.

9.4. Kudzu: a Symbolic Testing Framework for JavaScript
JavaScript [6] is the lingua franca for client-side scripting in Web applica-

tions. It is a powerful language with many advanced features, including dynamic
typing and evaluation, functions as objects, and various forms of delegation.
Such features enable sophisticated, interactive Web applications to be created
using JavaScript. These features also make it very challenging to thoroughly
test a JavaScript application. For instance, a JavaScript application may accept
many kinds of inputs, including responses from the server and user input from
from fields, which are structured as strings. A JavaScript testing tool must then
be able to discern the different kinds of inputs and handle them accordingly.

Kudzu [16] developed by Saxena et al. is a symbolic testing framework for
JavaScript with the aim of detecting client-side code injection vulnerabilities.
Kudzu groups JavaScript inputs into two categories: (1) event space, that en-
compasses states and sequence of actions of UI elements, and (2) value space,
that encompasses values supplied by external entities, including form data from
users, HTTP requests and URLs. Kudzu produces high-coverage test cases sys-
tematically by generating constraints about such inputs in its own constraint
language, which supports Boolean, bit vectors and string constraints. A prac-
tical constraint solver, Kaluza, is developed as part of Kudzu to solve such
constraints.

54

Figure 1: Architecture diagram for Kudzu. The components drawn in the dashed box perform functions specific to our
application of finding client-side code injection. The remaining components are application-agnostic. Components shaded in
light gray are the core contribution of this paper.

feedback component that uses the results from the constraint
solver as new program inputs.

The GUI explorer. The first step in automating JavaScript
application analysis is exploring the event space of user
interactions. Each event corresponds to a user interaction
such as clicking a check-box or a button, setting focus
on a field, adding data to data fields, clicking a link,
and so on. Kudzu currently explores the space of all se-
quences of events using a random exploration strategy. One
of the challenges is to comprehensively detect all events
that could result in JavaScript code execution. To address
this, Kudzu instruments the browser functions that process
HTML elements on the current web page to record when an
event handler is created or destroyed. Kudzu’s GUI explorer
component randomly selects an ordering among the user
events registered by the web page and executes them1. The
random seed can be controlled to replay the same ordering
of events. While invoking handlers, the GUI component also
generates (benign) random test strings to fill text fields.
(Later, symbolic execution will generate new input values
for these fields to explore the input space further.) Links
that navigate the page away from the application’s domain
are cancelled, thereby constraining the testing to a single
application domain at a time. In the future, we plan to
investigate alternative strategies to prioritize the execution
of events discovered as well.

Dynamic symbolic interpreter. Kudzu performs dynamic
symbolic execution by first recording an execution of the
program with concrete inputs, and then symbolically in-
terpreting the recorded execution in a dynamic symbolic

1Invoking an event handler may invalidate another handler (for instance,
when the page navigates as a result). In that case, the invalidated handlers
are ignored and if new handlers are created by the event that causes
invalidation, these events are explored subsequently.

interpreter. For recording an execution trace, Kudzu employs
an existing instrumentation component [27] implemented in
the web browser’s JavaScript interpreter. For each JavaScript
bytecode instruction executed, it records the semantics of
the operation, its operands and operand values in a sim-
plified intermediate language called JASIL [27]. The set
of JavaScript operations captured includes all operations
on integers, booleans, strings, arrays, as well as control-
flow decisions, object types, and calls to browser-native
methods. For the second step, dynamic symbolic execution,
we have developed from scratch a symbolic interpreter for
the recorded JASIL instructions.

Symbolic inputs for Kudzu are configurable to match the
needs of an application. For instance, in the application we
consider, detecting client-side code injection, all URL data,
data received over cross-window communication abstrac-
tions, and user data fields are marked symbolic. Symbolic
inputs may be strings, integers, or booleans. Symbolic execu-
tion proceeds on the JASIL instructions in the order they are
recorded in the execution trace. At any point during dynamic
symbolic execution, a given operand is either symbolic or
concrete. If the operand is symbolic, it is associated with a
symbolic value; otherwise, its value is purely concrete and is
stored in the dynamic execution trace. When interpreting a
JASIL operation in the dynamic symbolic interpreter, the
operation is symbolically executed if one or more of its
input operands is symbolic. Otherwise the operation of the
symbolic interpreter on concrete values would be exactly the
same as the real JavaScript interpreter, so we simply reuse
the concrete results already stored in the execution trace.

The symbolic value of an operand is a formula that
represents its computation from the symbolic inputs. For
instance, for the JASIL assignment operation y := x, if x
is symbolic (say, with the value input1 + 5), then symbolic
execution of the operation copies this value to y, giving

Figure 14: The overall architecture of Kudzu as shown in [16, Figure 1].

The overall architecture of Kudzu can be seen in Figure 14. The core com-
ponents of the system are those shaded in gray.

• The GUI explorer selects a random ordering of user events and executes
them. Concrete inputs of an execution is recorded, and then symbolically
executed by the dynamic symbolic interpreter.

• The path constraint extractor takes the results of symbolic execution and
constructs constraints with the aim to exercise different execution paths
of the JavaScript code. Kudzu uses a generational search strategy pro-
posed in [31] (introduced in Section 8.1) to decide the order of exercising
branches.

• The constraint solver solves the constraints by finding satisfying assign-
ments to variables, therefore generating new values to be used as inputs.
Finally, the input feedback system sends the newly generated inputs back
to the JavaScript program to drive new execution.

The other three components in Figure 14 are application-specific. Specifi-
cally,

• The sink-source identification components identifies critical sinks that may
receive untrusted inputs using a data flow analysis technique.

• The vulnerability condition extractor combines formulae generated by the
symbolic interpreter and path constraints to create formulae that describe
input values to the critical sink.

• Finally, the attack verification component executes tests with the gener-
ated inputs and determines whether an attack is executed.

The Kudzu system is evaluated on 18 real-world JavaScript applications,
which are used to evaluate the authors’ previous system, FLAX [32] (discussed in
Section 8.1). Compared to FLAX, Kudzu has a number of advantages. Firstly,
Kudzu requires a test suite to reach vulnerable code, whereas Kudzu automati-
cally generates test inputs that lead to high code coverage. Secondly, FLAX only

55

performs black-box fuzzing, a form of random testing, whereas Kudzu, based
on concolic execution, is able to reason about possible vulnerabilities, hence is
more directed. As a result, Kudzu manages to find code injection vulnerabilities
in 11 of the 18 applications. Among the vulnerabilities discovered by Kudzu 2
were not known prior to the experiments and are missed by FLAX.

10. User Session-based Testing

The white-box testing approach is often limited in nature because the inputs
have to be selected manually in order to adequately test the different parts of
the system. The selection of such inputs is a complicated process and may take
a long time. A user session starts when a request from a new IP address is
received by the server and ends when the user leaves the Web site or the session
times out [36, 9]. User session-based testing techniques help alleviate both of the
above problems. In user session-based testing, a list of interactions performed
by the user in the form of URLs and name-value pairs (of different attributes),
or cookies, are collected, from which test cases are then generated.

The rationale and advantages of user session-based testing are based on the
fact that since most Web application operations comprise receiving requests
from the client and then processing those requests, the collection of client re-
quests can be done with minor tweaks to the server. For example, with minimal
configuration changes, the Apache server can log all the received GET requests.
Utilising Java servlet filters is yet another alternative that enables the dynamic
interception of requests and responses at the server side. Another advantage
of user session testing is that since we are only concerned with the sessions’
data (URL and name-value pair), it provides a high-level abstraction of the het-
erogeneous nature of the different components. This lessens the dependencies
of user session-based testing techniques on changes in components of the Web
application under test.

Assuming we have a set of m user sessions U = {µ1, µ2, . . . , µm}, such that
each user session µi sends n requests {r1, r2, . . . , rn} to the Web server, where
each request rj consists of a URL and a name-value pair, Elbaum et al. [36]
propose three different techniques for generating test cases from user sessions,
namely:

• Using user session data directly. In this technique, different user sessions
are replayed individually. More specifically, each individual request rj
from a user session µi is formatted into a HTTP request which is then
sent to the server. The resulting test suite thus comprises m test cases for
user sessions. Elbaum et al. only include requests that are the result of a
sequence of the user’s events at the server site.

• Replaying a mixture of different session interactions from different users.
This method is supposed to expose the error conditions caused when con-
flicting data is provided by different users. The test cases are generated,
and a new test suite is created from the set of different user sessions, U ,
according to Algorithm 1.

56

Data: The set of m user sessions, U = {µ1, µ2, . . . , µm}
Result: The new test suite, Tnew
Tnew ← ∅; // Initialisation
while there are unused sessions in U do

µa ← randomSelection (U); // Select a random user session
randNumber ← genRandom (1, n) ; // n is the number of
requests in µa. This generates a random number between 1
and n

R← getRequests (µa, randNumber); // Get a random number of
user requests from the user session µa, and add them to
the test suite

foreach request ri ∈ R do
Tnew ← Tnew ∪ {ri};
newRequest← searchRequestWithSameUrl (ri,R);

end
µb ← randomSelection (U) ; // µb is different to µa

if newRequest = ∅ then
newRequest← searchRequestWithSameUrl (ri, U); // Search
for a request rj in user session µa that has the same
URL as the request ri from user session µa

end

if newRequest not found then
Tnew ← Tnew ∪ {µb}; // If no such user session exists,
then we use µb directly as a test case;

else if newRequest is found in µb then
Add to Tnew requests from newRequest onwards in µb;

end
Set µa as “used”;
U ← U \ {µa};

end
Algorithm 1: The replay algorithm used in user session-based testing
where the interactions of different sessions of different users are taken into
account [36].

• Mixing regular user requests with requests that are likely to be problematic
(e.g., navigating backward and forward while submitting a form). In this
case, the test cases are generated by replaying user session with some
modifications. This technique involves randomly deleting characters in
the name-value pair strings which may result in different scenarios being
explored (e.g., deleting one character from the username and password
in a login form leads to an incorrect test case). The algorithm can be
described more formally [36] as demonstrated in Algorithm 2:

57

Data: The set of m user sessions, U = {µ1, µ2, . . . , µm}
Result: The new test suite, Tnew
Tnew ← ∅; // Initialisation
while there are unused sessions in U do

µa ← randomSelection (U); // An unused session, µa, is
selected from U;
ri ← genRandomRequest (µa) ; // An unused request, ri, is
randomly selected from µa;

if no unused requests left in µa then
Tnew ← Tnew ∪ {µa} ; // µa is directly as a test case if
there are no more unused request left

end
if no name-value pair is present in ri then

Label ri as “used”;
else

rand← genRandom (0,1) ; // select randomly between the
two options
if rand > 0.5 then

foreach NV in name-value pairs do
NV ← deleteRandomChar (NV);
Tnew ← Tnew ∪ {NV };

end
else

newTest← deleteRandomCharFromAllAtrings() ; // delete
a character from all name-value pairs at once
Tnew ← Tnew ∪ newTest ; // form a single test case

end
end
Set µa as “used”;
U ← U \ {µa};

end
Algorithm 2: Test suite selection algorithm

Elbaum et al. [36] show that these capture-and-replay techniques for user session-
based testing are able to discover certain special types of faults which cannot
be exposed by white-box testing. However, their technique cannot detect faults
that are a result of rarely entered data. They also show that as the number of
user sessions increase, the effectiveness (percentage of faults detected) of these
techniques increase. However, as the number of user sessions increase, the time
and the cost associated with collecting the data, analysing the data and gen-
erating the test cases also increase. Thus, there is a need for prioritising and
reducing the number of test cases.

58

10.1. Test Case Prioritisation and Reduction for User Session-based Testing
Elbaum et al. propose two techniques for test suite size reduction. The first

technique [36] is based on the test suite reduction technique of Harold et al. [77],
and is applied to the test cases which are generated from user sessions directly.
The basic idea behind this technique is that some heuristics are applied to select
the smallest subset t of the test suite T , which achieves the same functional
coverage as T . Elbaum et al. show that for functional coverage, this technique
reduces the test suite size by 98% while not detecting 3 out of 20 faults; for
block coverage, it reduces test suite size by 93% while missing two faults; and
for transition coverage, it reduces size by 79% while missing one fault. Thus,
the overall effectiveness in terms of coverage and fault detection is reduced by
a small margin (∼ 2% for functional coverage, ∼ 7% for block coverage, and
∼ 20% for transition coverage).

The second method used by Elbaum et al. [36] for reducing the test cases
is based on clustering analysis. They group similar test cases in clusters, using
a hierarchical agglomerative approach and euclidian distance as the measure of
similarity (similar to the procedure employed by Dickinson et al. [78]). They
then generate a reduced test suite by randomly selecting one test case from each
cluster. A smaller number of clusters provides greater test reduction at a cost
of fault detection effectiveness. For example, when the cluster size is 4, the
test suite is reduced by 98% and three faults are undetected. Clustering of user
sessions is also discussed elsewhere [79], clustering is done according to a user
session-based technique. In this case, the user sessions are clustered based on
the service profile and then a set of representative user sessions are selected from
a particular cluster. The user sessions are then further enhanced by adding ad-
ditional requests, which take into account the dependence relationships between
different Web pages. It was also found out, through two separate empirical anal-
yses conducted, that the resulting test suite reduced the number of test cases,
and also could detect a majority of the faults detected by the original test suite
(greater than 90%) [79].

Sampath et al. [37] further extend on the test reduction techniques proposed
by Elbaum et al. [36], by applying the formal concept analysis techniques [80, 9].
Formal concept analysis aims at organising a set of objects O into a hierarchy.
Besides the set of objects O, formal concept analysis takes as input a set of
attributes A and a binary relation R known as a context, such that R ⊆ O×A.
The relationship R evaluates to boolean values and is true only if a set of objects,
o ⊆ O shares a set of attributes, a ⊆ A.

A tuple, t, for a subset of objects, Oi, and a subset of attributes, Aj , can
be defined such that all and only the objects in Oi share all and only attributes
in Aj . A concept is a tuple t = (Oi, Aj) in which Oi ⊆ O and Aj ⊆ A. In this
technique, a concept lattice is first formed which is a partial ordering on the
set of all concepts. The graph formed is a directed acyclic graph in which the
nodes represent the concept and the edges denote the partial ordering. The top
element > of the lattice represents the most general concept which represents
the subset of attributes in A which are shared by all the objects O in the lattice.

59

The bottom element ⊥ represents the most special concept and represents the
subset of objects in O that shares all the attributes in A.

In terms of user session-based testing, the set O represents the set of user
sessions (i.e., the number of test cases) and the set A represents the URLs for the
user sessions. Although an attribute comprises both URLs and name-value pairs
for a user session µi, the effectiveness of choosing only URLs as the attribute set
is demonstrated by Sampath et al. [37]. Thus, for a given pair of user session
µi and URL rj , the binary relation R is true iff µi requests rj .

A lattice of user sessions is represented diagrammatically in Figure 15. The
different user sessions are shown in Table 4. The objects O are represented in
rows, where the prefix “G”, indicates GET requests, and the prefix “P” indicates
POST requests), both of which prefix the different attributes A (columns of Ta-
ble 4). The lattice shown in Figure 15 is then constructed from the first 6 user
sessions.

Table 4: A tabular representation of the different objects and attributes used to construct a
lattice. Only the first 6 user sessions are used for the construction of the lattice shown in
Figure 15. In this table, an “X" for a particular column/URL indicates that a user belonging
to a specific user session accessed the URL. For example, the “X" symbols in the first row
indicates that the user “us1" accessed/requested the URLs “GDef", “GReg", and “GLog".
This table is adapted from [37, Figure 1].

Session GDef GReg GLog PLog GShop GBooks GMyInfo

us1 X X X

us2 X X X X X

us3 X X X X X

us4 X X X X X

us5 X X X

us6 X X X X X X
us7 X X X X X X

us8 X X X

Once the lattice is formed, there are two techniques proposed by Sampath
et al. to reduce the test suite, which are discussed in the following subsections.

10.2. Batch Test Suite Reduction
This technique is similar to the clustering technique proposed by Elbaum et

al. [36] because it selects the smallest set of user sessions (objects) similar to each
other that exercises all the URLs which are executed by the original test suite.
This technique also executes the common URL subsequences of different use
cases as represented by the original test suite. The heuristic for selecting user
sessions (or test cases) for this technique is to include a user session from each
node next to the bottom element ⊥, i.e., one level up from the bottom node ⊥.
These nodes are called next-to-bottom nodes. This is because the similarity of a

60

GDef GReg GLog PLog GShop GBooks GMyInfo
us1 X X X
us2 X X X X X
us3 X X X X X
us4 X X X X X
us5 X X X
us6 X X X X X X

us7 X X X X X X
us8 X X X

ii

us6us7

GDef GReg GLog

us5us1
GShop

GBooks

us4us3

PLog

us2

GMyInfo

iii

us4

us6us7

us2 us3

PLog

GRegGDef GLog

GBooks

us8us5us1
GShop

GMyInfo

i

GRegGDef GLog

us6us2

GMyInfo us3 us4

GBooks

GShop
us1 us5

PLog

Figure 1. (a) Relation table and (b) concept lattices for test suite reduction

the original test suite while representing the common URL
subsequences of the different use cases represented by the
original test suite. This heuristic is implemented as follows:
The reduced test suite is set to contain a user session from
each node next to ⊥, that is one level up the lattice from ⊥.
These nodes contain objects that are highly similar to each
other. If the set of user sessions at ⊥ is nonempty, those user
sessions are also included in the reduced test suite.

We have performed experimental studies and user-
session analysis to investigate the intuitive reasoning be-
hind clustering user sessions based on concept analysis and
our heuristic for user-session selection. These studies ex-
amined the commonality of URL subsequences of ob-
jects clustered into the same concepts and also compared
the subsequence commonality of the selected user ses-
sions with those in the remainder of the suite. The study
is described fully in another paper [32]; the results pro-
vide support for using concept analysis with a heuristic
for user-session selection where we choose representa-
tives from different clusters of similar use cases. Thus,
our approach differs from traditional reduction tech-
niques such as selecting the next user session with most
additional coverage until 100% coverage is obtained.

In our example in Figure 1, the original test suite is all the
user sessions in the original context. The reduced test suite
however contains only user sessions us2 and us6, which la-
bel the next-to-bottom nodes. By traversing the concept lat-
tice to " along all paths from these nodes, we will find that
the set of URLs accessed by these two user sessions is ex-

actly the set of all URLs requested by the original test suite.

4. Incremental Reduced Test Suite Update

The key to enabling the generation of a reduced test suite
with URL coverage similar to a test suite based on large
user-session data sets, without the overhead for storing and
processing the complete set at once, is the ability to incre-
mentally perform concept analysis. The set of attributes A
can be fixed to be the set of all possible URLs related to
the web application being tested. The general approach is
to start with an initial user-session data set and incremen-
tally analyze additional user sessions with respect to the cur-
rent reduced test suite. The incremental analysis results in
an updated concept lattice, which is then used to incremen-
tally update the reduced test suite.

More specifically, the incremental update problem can
be formulated as follows:

Given an additional user session s and a tuple
(O, A, R, L, T), where O is the current set of user
sessions (i.e., objects), A is the set of possible
URLs in the web application (i.e., attributes), R
is the binary relation describing the URLs that are
requested by each user session in O, L is the con-
cept lattice output from an initial concept analy-
sis of (O, A, R), and T is the reduced test suite
with respect to L, modify the concept lattice L to
incorporate the user session s and its attributes,
creating an updated lattice L′ without building L′

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

Figure 15: A graphical representation of a lattice construction from the different objects and
attributes given in Table 4. This figure is adapted from [37, Figure 1].

GDef GReg GLog PLog GShop GBooks GMyInfo
us1 X X X
us2 X X X X X
us3 X X X X X
us4 X X X X X
us5 X X X
us6 X X X X X X

us7 X X X X X X
us8 X X X

ii

us6us7

GDef GReg GLog

us5us1
GShop

GBooks

us4us3

PLog

us2

GMyInfo

iii

us4

us6us7

us2 us3

PLog

GRegGDef GLog

GBooks

us8us5us1
GShop

GMyInfo

i

GRegGDef GLog

us6us2

GMyInfo us3 us4

GBooks

GShop
us1 us5

PLog

Figure 1. (a) Relation table and (b) concept lattices for test suite reduction

the original test suite while representing the common URL
subsequences of the different use cases represented by the
original test suite. This heuristic is implemented as follows:
The reduced test suite is set to contain a user session from
each node next to ⊥, that is one level up the lattice from ⊥.
These nodes contain objects that are highly similar to each
other. If the set of user sessions at ⊥ is nonempty, those user
sessions are also included in the reduced test suite.

We have performed experimental studies and user-
session analysis to investigate the intuitive reasoning be-
hind clustering user sessions based on concept analysis and
our heuristic for user-session selection. These studies ex-
amined the commonality of URL subsequences of ob-
jects clustered into the same concepts and also compared
the subsequence commonality of the selected user ses-
sions with those in the remainder of the suite. The study
is described fully in another paper [32]; the results pro-
vide support for using concept analysis with a heuristic
for user-session selection where we choose representa-
tives from different clusters of similar use cases. Thus,
our approach differs from traditional reduction tech-
niques such as selecting the next user session with most
additional coverage until 100% coverage is obtained.

In our example in Figure 1, the original test suite is all the
user sessions in the original context. The reduced test suite
however contains only user sessions us2 and us6, which la-
bel the next-to-bottom nodes. By traversing the concept lat-
tice to " along all paths from these nodes, we will find that
the set of URLs accessed by these two user sessions is ex-

actly the set of all URLs requested by the original test suite.

4. Incremental Reduced Test Suite Update

The key to enabling the generation of a reduced test suite
with URL coverage similar to a test suite based on large
user-session data sets, without the overhead for storing and
processing the complete set at once, is the ability to incre-
mentally perform concept analysis. The set of attributes A
can be fixed to be the set of all possible URLs related to
the web application being tested. The general approach is
to start with an initial user-session data set and incremen-
tally analyze additional user sessions with respect to the cur-
rent reduced test suite. The incremental analysis results in
an updated concept lattice, which is then used to incremen-
tally update the reduced test suite.

More specifically, the incremental update problem can
be formulated as follows:

Given an additional user session s and a tuple
(O, A, R, L, T), where O is the current set of user
sessions (i.e., objects), A is the set of possible
URLs in the web application (i.e., attributes), R
is the binary relation describing the URLs that are
requested by each user session in O, L is the con-
cept lattice output from an initial concept analy-
sis of (O, A, R), and T is the reduced test suite
with respect to L, modify the concept lattice L to
incorporate the user session s and its attributes,
creating an updated lattice L′ without building L′

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

Figure 16: A graphical representation of a new and updated lattice construction from two
new user sessions, “us7” and “us8” (see Table 4). The new lattice includes user session “us7”
as a next-to-bottom-node. The new user session “us7” will now be added to the updated test
suite. This figure is adapted from [37, Figure 1].

set of user sessions Ui is defined by the number of attributes shared by all of the
user sessions in Ui. Therefore, the set of objects which are closer to the bottom
are more highly similar than the set of objects closer to the top of the lattice.
If the bottom element ⊥ is non-empty, the set of user sessions in ⊥ are also
included in the test suite. Thus, test cases are chosen from different clusters
of similar use cases. The advantage of this technique is that the heuristic is
very simple to compute and label the next-to-bottom nodes, i.e., nodes that are
included in the updated test suite. The limitation of the method is that all the
user sessions are considered together, which may result in increased complexity
of the overall approach.

61

GDef GReg GLog PLog GShop GBooks GMyInfo
us1 X X X
us2 X X X X X
us3 X X X X X
us4 X X X X X
us5 X X X
us6 X X X X X X

us7 X X X X X X
us8 X X X

ii

us6us7

GDef GReg GLog

us5us1
GShop

GBooks

us4us3

PLog

us2

GMyInfo

iii

us4

us6us7

us2 us3

PLog

GRegGDef GLog

GBooks

us8us5us1
GShop

GMyInfo

i

GRegGDef GLog

us6us2

GMyInfo us3 us4

GBooks

GShop
us1 us5

PLog

Figure 1. (a) Relation table and (b) concept lattices for test suite reduction

the original test suite while representing the common URL
subsequences of the different use cases represented by the
original test suite. This heuristic is implemented as follows:
The reduced test suite is set to contain a user session from
each node next to ⊥, that is one level up the lattice from ⊥.
These nodes contain objects that are highly similar to each
other. If the set of user sessions at ⊥ is nonempty, those user
sessions are also included in the reduced test suite.

We have performed experimental studies and user-
session analysis to investigate the intuitive reasoning be-
hind clustering user sessions based on concept analysis and
our heuristic for user-session selection. These studies ex-
amined the commonality of URL subsequences of ob-
jects clustered into the same concepts and also compared
the subsequence commonality of the selected user ses-
sions with those in the remainder of the suite. The study
is described fully in another paper [32]; the results pro-
vide support for using concept analysis with a heuristic
for user-session selection where we choose representa-
tives from different clusters of similar use cases. Thus,
our approach differs from traditional reduction tech-
niques such as selecting the next user session with most
additional coverage until 100% coverage is obtained.

In our example in Figure 1, the original test suite is all the
user sessions in the original context. The reduced test suite
however contains only user sessions us2 and us6, which la-
bel the next-to-bottom nodes. By traversing the concept lat-
tice to " along all paths from these nodes, we will find that
the set of URLs accessed by these two user sessions is ex-

actly the set of all URLs requested by the original test suite.

4. Incremental Reduced Test Suite Update

The key to enabling the generation of a reduced test suite
with URL coverage similar to a test suite based on large
user-session data sets, without the overhead for storing and
processing the complete set at once, is the ability to incre-
mentally perform concept analysis. The set of attributes A
can be fixed to be the set of all possible URLs related to
the web application being tested. The general approach is
to start with an initial user-session data set and incremen-
tally analyze additional user sessions with respect to the cur-
rent reduced test suite. The incremental analysis results in
an updated concept lattice, which is then used to incremen-
tally update the reduced test suite.

More specifically, the incremental update problem can
be formulated as follows:

Given an additional user session s and a tuple
(O, A, R, L, T), where O is the current set of user
sessions (i.e., objects), A is the set of possible
URLs in the web application (i.e., attributes), R
is the binary relation describing the URLs that are
requested by each user session in O, L is the con-
cept lattice output from an initial concept analy-
sis of (O, A, R), and T is the reduced test suite
with respect to L, modify the concept lattice L to
incorporate the user session s and its attributes,
creating an updated lattice L′ without building L′

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

Figure 17: The new lattice does not include user session “us8” (see Table 4) as a next-to-
bottom-node. The new user session “us8” will therefore not be added to the updated test
suite. This figure is adapted from [37, Figure 1].

10.3. Incremental Reduced Test Suite Update
This algorithm utilizes the incremental concept formation algorithm devel-

oped by Godin, Missaoui and Alaoui [80]. This technique starts with an initial
concept lattice L and an initial reduced test suite T formed from an initial user
session data set S. It then updates the test suite T ′ and the concept lattice
L′ as more user sessions are analysed. After every addition of a user session,
the concept lattice L′ is updated, and if a user session Si replaces a next-to-
bottom node in the lattice (i.e., the nodes which are connected to the bottom
element ⊥), Si is then added to the updated test suite T ′ and the replaced next-
to-bottom node representing user session is removed from the test suite T ′. If,
however, a user session Si does not replace a next-to-bottom node in the lattice,
the test suite is not changed and the user session (i.e., the test case) is ignored.
The existing internal nodes, however, will never “sink” to the next-to-bottom
nodes because the partial ordering of the existing internal nodes with respect to
existing next-to-bottom nodes remain unchanged.

This is again demonstrated in Figure 16 and Figure 17, where the second
lattice shows that the user session “us7” will be added to the test suite. However,
in the third lattice, since “us8” does not replace a “next-to-bottom” node, it is
not added to the test suite. The advantage of this approach is that not all
the user sessions are considered together, which reduces the complexity of the
overall approach.

Sampath et al. show that these techniques result in test suite size reduction
by 87.8%, replay time reduction by 74.2%, 3.8% loss in statement coverage and
no loss in function coverage. The effectiveness of the reduced test suite, however,
was found to be 20% less than that of the original test suite [9].

Sampath et al. [37] also propose an automated prototype framework which
enables the collection of user session data and hence helps in generation of

62

reduced test suite. The test cases are replayed to generate coverage reports and
perform fault detection analysis. As shown in Figure 18, the process begins with
the collection of user session data, in Step 1 in the diagram. This phase is known
as the Web application execution or logging phase. Sampath et al. [37] develop
a modified version of the Resin 24 Web server’s AccessLog class to collect user
session data attributes of interest. These include information relating to each
user request, such as IP address, timestamp, requested URL(s), GET/POST data
and cookies. Timestamp of a given request ri is tracked. A user session begins
when a request arrives from a new IP address and ends when the user leaves the
Web site or the session times out. If requests are more than 45 minutes apart,
then they are considered to be requests from distinct sessions. The access log
data is then provided to a tester (Step 2 in the diagram). Then the access log
is parsed to generate a relation table, similar to the one depicted in Figure 15.
The test suite reducer implements the heuristic (Batch test suite reduction) for
obtaining a reduced test suite. The concept analysis tool depicted in the figure
outputs a lattice.

The test coverage evaluator (Step 4) comprises the Java code coverage tool
“Clover”25, which instruments the Java files that are generated by the server.
The reduced test suite is then replayed (Step 5). The GNU Unix utility “wget”
was used as the replay tool. Input parameters to the “wget” utility include cookie
information and POST/GET data associated with the request to maintain the
application state information. To guarantee consistency in replay, the database
is also restored to its original state before replay. The coverage report is then
generated (Step 6). The test suite is then incrementally updated in Steps 7,
8 and 9 with new user sessions coming from New Access Log (Step 7) and the
current lattice L getting updated and the current test suite T getting updated
(Step 9).

10.4. Test Case Reduction Through Examining URL Trace
Another technique for reduced test case selection is proposed by Zhong-

sheng [38]. It involves identifying whether a URL trace (or a sequence of URL
requests) in a particular user session Uα is the prefix of a URL trace requested
by another user session Uβ . A trace α is the prefix of another trace β iff α is
the subsequence of β and they have the same initial symbol (or request). For
example, if α = abc, β = abcde, then α is a prefix of β). If a URL trace in one
user session Uα is the prefix of another URL trace in Uβ , then the user session
Uα is removed from the test case. The number of user sessions required for
testing from this algorithm can be reduced greatly. The algorithm can also be
easily implemented. It also covers all the URLs requested by the original set of
user sessions and keeps the sequence of URL requests, i.e., it guarantees that
the original test requirements are satisfied.

24http://www.caucho.com/resin/. This site was last accessed on January 31, 2013.
25http://www.thecortex.net/clover/. This site was last accessed on January 31, 2013.

63

Concept Analysis Tool

Access Log Parser

Relation Table

Lattice

Suite
Reduced Test

(9)

Access
Log

New

(3)

Test Case Generator

(8)

Tester

(4)

Instrumentor/Coverage Evaluator

(6)

(2)

original

instrumented
Tool

Coverage Analysis

Web Application Execution/Logging

Web Server

(1)

(5)

Replay Tool/Oracle

Access
Log

Coverage
Report

App.

Access
Log

(7)

(End User)
Client

Report

Code

Replay Tool Fault

Added User

Detection
ReducerTest Suite

Updater

Session, u

Incremental Test Suite

Figure 3. Current Prototype Framework

generation of a reduced test suite, which can be replayed
to generate test coverage reports and perform fault detec-
tion studies. The process as illustrated in Figure 3 begins
with the collection of user-session data (Step (1)). This is
the web application execution/logging phase of our pro-
totype framework. To obtain user-session data, we rewrote
the Resin [29] web server’s AccessLog class to collect the
specific data of interest. In particular, we collected infor-
mation pertaining to each user request, such as IP address,
time stamp, URL requested, GET/POST data, and cookies.
Once the user-session data is logged, the process of generat-
ing test cases can begin. Note that we define user sessions as
beginning when a request arrives from a new IP address and
ending when the user leaves the website or the session times
out. In addition, we keep track of the timestamp of the re-
quest. Requests from the same IP that are more than 45 min-
utes apart are considered to be distinct sessions. In the fu-
ture we plan to extend the definition of user sessions to the
more general case where multiple users’ requests can origi-
nate from the same IP address.

We assume the access log is provided to a tester (Step
(2)). Step 3 is the test case generation phase of our frame-
work. It begins with parsing the access log to generate a
relation table. The concept lattice is constructed utilizing
Lindig’s concepts tool [20]. This tool takes a relation ta-
ble as input and outputs a lattice. The test suite reducer im-
plements the heuristic for identifying the reduced test suite.

In Step (4), our test coverage evaluator, consisting of
the Java code coverage tool Clover [6], instruments the Java
source files that the server generates. The Java source files

correspond to the JSP code of the application. Step (5) is the
replay of the reduced test suite. We utilized the GNU Unix
utility wget, which supports the non-interactive download
of files over the HTTP protocol, as our replay tool. The re-
play tool is the core of our replay tool/oracle phase of the
framework. Additional input parameters to wget include
cookie information and POST or GET data associated with
the original request in order to maintain application state in-
formation. To guarantee consistency in replay, we also re-
store the state of the database to its original state (i.e., the
state before logging) before replay. Step (6) is the genera-
tion of the coverage report. From a software tester’s point
of view, the above process provides a tester with the means
to automatically generate test cases with real data as input
and then replay the test cases, and gather coverage informa-
tion. Steps (7), (8), and (9) depict the incremental update of
the reduced test suite, with a user session from a new access
log and the current concept lattice input to the incremental
test suite updater, which outputs the updated reduced test
suite and updated lattice. Step (5) also plays a role in de-
termining the fault detection capability of the reduced suite
against the original suite. Comparison of the JSP pages re-
trieved on replaying the test suites (original or reduced) is
performed to determine the number of detected faults.

6. Experimental Study

Our initial experimental studies focus on providing ev-
idence of the potential effectiveness of applying our pro-
posed methodology for automatic but scalable test case gen-

Proceedings of the 19th International Conference on Automated Software Engineering (ASE’04)
1068-3062/04 $ 20.00 IEEE

Figure 18: Diagram depicting the framework proposed by Sampath et al. [37]. This figure is
taken from [37, Figure 3].

The user sessions reduced by the algorithm are then further divided into
subgroups, each of which is regarded as an individual test suite. In order to
group these user sessions together, different discontinuous threshold values, to
compare against the lengths of greatest common prefixes of user sessions, and
denoted by ζ1, ζ2, . . . ζk, such that ζi ≥ 1 for 1 ≤ i ≤ k, are defined. All user
sessions whose greatest common prefix (the longest common prefix between dif-
ferent user sessions) lies between certain threshold values are grouped together.
For example, let us consider three different threshold values, ζ1, ζ2, ζ3, such that
ζ1 = 2, ζ2 = 4, and ζ1 = 7. Let us also consider four different user traces, such
that γ1 =“abcdefg”, γ2 =“abcdeh”, γ3 =“abcd”, and γ4 =“cde”. Let us denote
the length of the greatest common prefix of a particular group of user traces
by α. Then, depending on the threshold values, ζ1, ζ2, ζ3, we can divide these
traces into two groups/sets, such that the values of α for these groups lie within
the range of the threshold values, ζ1, ζ2, ζ3. One way to split these user traces
could be to group it into two sets, namely, {γ1, γ2}, where the length of the
greatest common prefix (the string “abcde”) is 5, which is between ζ2 and ζ3 (or
more formally, 4 <| α |≤ 7), and {γ3, γ4}, where the length of the greatest com-
mon prefix is 0, which is less than the threshold value of ζ1 (or, more formally,
| α |≤ 2). The user traces could also have been split differently into two groups,
namely, {γ1, γ2, γ3}, where the length of the greatest common prefix (the string
“abcd”) is 4, which is between ζ1 and ζ2 (or more formally, 2 <| α |≤ 4), and
{γ4}, where the length of the greatest common prefix is 0, which is less than ζ1
(or, more formally, | α |≤ 2) [38].
The test suite with the shortest greatest common prefix is executed first [38].
This is because these user sessions indicate special or different URL requests,
which represent distinct requirements for a Web applications. Since these re-
quests represent the sequence of URLs which is rarely executed in user interac-

64

tions, it is especially important to test these scenarios as something could easily
go wrong. The rest of the test suites are prioritised according to their descend-
ing lengths of their greatest common prefixes, i.e., the test suite with the longest
greatest common prefix is executed, then the one with second longest greatest
common prefix, and so on. In each test suite, the test cases are prioritised ac-
cording to the coverage ratios of URLs requested, i.e., the test case with longer
URL trace requested is executed earlier. If the lengths of URL traces of several
test cases in the same test suite are equal, the order of execution is randomly
determined.

11. Conclusion and Future Directions

The World Wide Web has become an indispensable part of our society in two
short decades. With the rapid advances in hardware infrastructure and software
technologies, Web applications, and software that runs on a Web server enabling
users to interact with the application via a browser or other software services
have grown to be so sophisticated that it supports complex interactions with
users (and other Web applications). Additionally, these applications are also
able to complete complex transactions in a secure manner in a relatively short
period of time. The ubiquity of the Web and the central role Web applications
on the Web play make it imperative to ensure that Web applications are secure,
correct and efficient.

Testing is a validation and quality assurance approach widely practised by
companies. Software testing in general, and Web application testing specifically,
have also been an active research area. Despite the importance of Web appli-
cations, major research efforts in the testing of Web applications have not been
surveyed in a substantial way. In this paper, we present some recent advances
in Web testing techniques and discuss the strengths and weaknesses of these
techniques.

Of the different techniques, some are more effective at finding faults,including
scanning and crawling techniques, mutation testing and fuzz testing, in existing
applications, whereas others are more effective at ensuring that the application
has been adequately tested. In other words, a different testing techniques have
different goals and targets, and thus some testing techniques may be more ad-
equate than others depending on the nature of the testing that needs to be
performed on a Web application. Moreover, each of these techniques differ in
their inputs, outputs, conditions for stopping the test, and their primary pur-
pose (as summarised in Tables 1, 2 and 3 in Section 2). Additionally, we also
discuss how the different techniques can be applied to Web applications and
ensure that the Web applications have been adequately tested.

As we have already discussed, due to the heterogeneous nature and the ever
growing complexity of Web applications, it is important that proper attention is
given to testing Web applications. Also, since a large number of users use Web
applications to carry out a host of different tasks, including financial transac-
tions, appointment booking and communications (emails, instant messaging and
voice/video calls), it is important to ensure the privacy of users and the integrity

65

of the transactions. Therefore, if a Web application is not properly tested, it
means that a lot of potential users could risk losing their private data and/or
facing severe financial losses. One of the most critical areas of Web application
testing - and one that can cause severe financial and data losses if compromised
or not done rigorously enough- is Web security. As we described in Section
6, there are several scanning and crawling techniques which test specifically to
test if a given Web application contains security flaws by injecting unsanitised
inputs. Some of these scanners are also open-source and readily available, in-
cluding SecuBat [8], Selenium [61], and JsUnit, which we discussed in the paper.
In addition, we also discussed Mutation testing in Section 4, where lines of code
in a piece of software are modified and then test cases are deemed successes or
failures depending on whether or not they can detect the change in the software
code. All these techniques expose that the security flaws in Web applications,
thus ensuring safer and more robust Web applications.

Moreover, we have also discussed various testing techniques which ensure
that the application functions consistently with the specification(s) as required.
Some of these techniques include creating an overall model of the application,
from which test cases are derived for the test suite, such as Graph based tech-
niques [19], the Finite State Machine [20], and the probable FSM [21]. Other
techniques to ensure that the application behaves consistently with the specifi-
cation include search-based software engineering techniques [23], which ensure
that a Web application is tested as thoroughly as possible, as measured by the
coverage of its branches; Concolic testing techniques [73] - such as DART [65],
EXE [69] - combine concrete execution and symbolic execution to ensure that
the program traverses along different paths/branches. Furthermore, we have
also discussed how concolic testing can be applied to test PHP Web Applica-
tions [34]. In addition, we also discussed user session-based testing techniques in
Section 10, in which test cases are derived from data collected from user sessions
(URLs and name-value pairs).

However, there is also significant future work and research that can be done
on testing of Web applications. In the case of user session-based testing, the
potential benefits of integrating user session data with traditional testing tech-
niques has yet to be fully realised and requires further investigation [36]. Fur-
thermore, the technique could also be extended to take into account concurrent
user requests and keep track of Web application states. Similarly, in order to
truly exploit the power of user-session data, user-session data could be used to
assess the appropriateness of an existing test suite in the face of shifting op-
erational profiles [36]. In addition, a more holistic and empirical analysis of
techniques proposed to reduce the number of user sessions in a test suite could
be done in future (e.g., by conducting experiments on a larger set of URLs,
etc) [37].

Similarly, in the case of the finite state machine-based testing technique [20],
further work needs to be done with regards to automating the testing technique.
Another limitation of the Finite State Machine-based (FSM-based) testing tech-
nique is that it has limited support for unanticipated, user-controlled transitions,
called operational transitions [81]. This includes a user going directly to an in-

66

ternal Web page with a bookmark, URL rewriting and unanticipated back and
forward navigation. In order to test these transitions, a method will have to
be found to model operational transitions in a tractable manner, that is, there
are no space explosion problems. This could be as simple as keeping a list of
potential operational transitions and selecting them at various points in a test
sequence [20]. This issue has already been discussed to some extent in Wu
and Offutt [81], and therefore future work could involve combining these two
techniques.

In the case of scanning and crawling techniques, more plug-ins to initiate
different types of attacks could be added to a scanner [8]. Furthermore, most
of the scanning techniques discussed in this paper (e.g., SecuBat, WAVES) do
not consider the number or lengths of queries required to detect a flaw in a Web
application. More work could be done in this area, perhaps in combination with
similar works done by Madhavan et al. [82], to reduce the length of query strings
when accessing the deep Web [82] (i.e., the part of the Web that is hidden from
the user and acts as the back-end for most Web applications, e.g., the database).

References

[1] G. J. Myers, C. Sandler, T. Badgett, The Art of Software Testing, Wiley, 2011. URL: http:
//wiley.com/WileyCDA/WileyTitle/productCd-1118031962.html.

[2] T. Berners-Lee, The world-wide web, Computer Networks and ISDN Systems 25 (1992) 454
– 459.

[3] C. S. Wallace, Digital Computers, in: Butler, S.T. and Messel, H. (eds) Atoms to Andromeda,
Shakespeare-Head, Sydney, 1966, pp. 215–245.

[4] G. A. Di Lucca, A. R. Fasolino, Testing web-based applications: The state of the art and
future trends, Inf. Softw. Technol. 48 (2006) 1172–1186.

[5] M. H. Alalfi, J. R. Cordy, T. R. Dean, Modelling methods for web application verification
and testing: state of the art, Softw. Test. Verif. Reliab. 19 (2009) 265–296.

[6] D. Flanagan, JavaScript: the definitive guide, O’reilly, 2011.

[7] R. J. Lerdorf, K. Tatroe, B. Kaehms, R. McGredy, Programming Php, 1st ed., O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 2002.

[8] S. Kals, E. Kirda, C. Kruegel, N. Jovanovic, SecuBat: a web vulnerability scanner, in:
Proceedings of the 15th international conference on World Wide Web, WWW ’06, ACM,
New York, NY, USA, 2006, pp. 247–256. URL: http://doi.acm.org/10.1145/1135777.1135817.
doi:10.1145/1135777.1135817.

[9] S. Sampath, V. Mihaylov, A. Souter, L. Pollock, A scalable approach to user-session based
testing of Web applications through concept analysis, in: Automated Software Engineering,
2004. Proceedings. 19th International Conference on, 2004, pp. 132 – 141. doi:10.1109/ASE.
2004.1342731.

[10] S. Elbaum, G. Rothermel, S. Karre, M. Fisher II, Leveraging user-session data to support
Web application testing, Software Engineering, IEEE Transactions on 31 (2005) 187 – 202.

[11] T. O’Reilly, What is web 2.0: Design patterns and business models for the next generation
of software, Communications & strategies (2007) 17.

67

[12] J. J. Garrett, et al., Ajax: A new approach to web applications, 2005. http://web.archive.
org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php.

[13] A. Mesbah, A. van Deursen, Invariant-based automatic testing of AJAX user interfaces, in:
Proceedings of the 31st International Conference on Software Engineering, ICSE ’09, IEEE
Computer Society, Washington, DC, USA, 2009, pp. 210–220. URL: http://dx.doi.org/10.
1109/ICSE.2009.5070522. doi:10.1109/ICSE.2009.5070522.

[14] W. J. Chun, Core Python Programming (2Nd Edition), Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2006.

[15] D. Flanagan, Y. Matsumoto, The Ruby Programming Language, first ed., O’Reilly, 2008.

[16] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, D. Song, A symbolic execution
framework for JavaScript, in: Proceedings of the 2010 IEEE Symposium on Security and
Privacy, SP’10, IEEE Computer Society, Washington, DC, USA, 2010, pp. 513–528. URL:
http://dx.doi.org/10.1109/SP.2010.38. doi:10.1109/SP.2010.38.

[17] C. S. Wallace, Statistical and Inductive Inference by Minimum Message Length, Springer-
Verlag, 2005.

[18] D. J. Mayhew, The usability engineering lifecycle, in: CHI 98 Cconference Summary on
Human Factors in Computing Systems, CHI ’98, ACM, New York, NY, USA, 1998, pp. 127–
128. URL: http://doi.acm.org/10.1145/286498.286575. doi:10.1145/286498.286575.

[19] F. Ricca, P. Tonella, Analysis and testing of Web applications, in: Proceedings of the
23rd International Conference on Software Engineering, ICSE ’01, IEEE Computer Society,
Washington, DC, USA, 2001, pp. 25–34. URL: http://dl.acm.org/citation.cfm?id=381473.
381476.

[20] A. A. Andrews, J. Offutt, R. T. Alexander, Testing Web applications by modeling with FSMs,
Software and Systems Modeling 4 (2005) 326–345. 10.1007/s10270-004-0077-7.

[21] Z. Qian, H. Miao, Towards Testing Web Applications: a PFSM-based Approach, in: Ad-
vanced Materials Research, volume 1, 2011, pp. 220–224. doi:10.4028/www.scientific.net/
AMR.204-210.220.

[22] U. Praphamontripong, J. Offutt, Applying Mutation Testing to Web Applications, in: ICST
Workshops, 2010, pp. 132–141.

[23] N. Alshahwan, M. Harman, Automated web application testing using search based software
engineering, in: Automated Software Engineering, ASE, 2011, pp. 3–12.

[24] Y.-W. Huang, S.-K. Huang, T.-P. Lin, C.-H. Tsai, Web application security assessment by
fault injection and behavior monitoring, in: Proceedings of the 12th international conference
on World Wide Web, WWW ’03, ACM, New York, NY, USA, 2003, pp. 148–159. URL:
http://doi.acm.org/10.1145/775152.775174. doi:10.1145/775152.775174.

[25] J. Bau, E. Bursztein, D. Gupta, J. Mitchell, State of the art: Automated black-box web
application vulnerability testing, Security and Privacy, IEEE Symposium on 0 (2010) 332–
345.

[26] M. Benedikt, J. Freire, P. Godefroid, Veriweb: Automatically testing dynamic web sites, in:
In Proceedings of 11th International World Wide Web Conference (WWW 2002), 2002.

[27] L. Zhou, J. Ping, H. Xiao, Z. Wang, G. Pu, Z. Ding, Automatically testing web services
choreography with assertions, in: Proceedings of the 12th international conference on Formal
engineering methods and software engineering, ICFEM’10, Springer-Verlag, Berlin, Heidel-
berg, 2010, pp. 138–154. URL: http://dl.acm.org/citation.cfm?id=1939864.1939878.

[28] L. Frantzen, M. Las Nieves Huerta, Z. G. Kiss, T. Wallet, Web Services and Formal Meth-
ods, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 143–157. URL: http://dx.doi.org/10.
1007/978-3-642-01364-5_9. doi:10.1007/978-3-642-01364-5_9.

68

[29] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, F. Tip, A framework for automated testing
of JavaScript web applications, in: Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, ACM, New York, NY, USA, 2011, pp. 571–580. URL: http:
//doi.acm.org/10.1145/1985793.1985871. doi:10.1145/1985793.1985871.

[30] P. Heidegger, P. Thiemann, Contract-driven testing of JavaScript code, in: Proceedings
of the 48th international conference on Objects, models, components, patterns, TOOLS’10,
Springer-Verlag, Berlin, Heidelberg, 2010, pp. 154–172. URL: http://dl.acm.org/citation.
cfm?id=1894386.1894395.

[31] P. Godefroid, M. Levin, D. Molnar., Automated whitebox fuzz testing, in: Network &
Distributed System Security Symposium, NDSS, 2008.

[32] P. Saxena, S. Hanna, P. Poosankam, D. Song, FLAX: Systematic discovery of client-side
validation vulnerabilities in rich web applications, in: 17th Annual Network & Distributed
System Security Symposium,(NDSS), 2010.

[33] P. Godefroid, A. Kiezun, M. Y. Levin, Grammar-based whitebox fuzzing, SIGPLAN Not. 43
(2008) 206–215.

[34] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, M. D. Ernst, Finding bugs in
dynamic web applications, in: Proceedings of the 2008 international symposium on Software
testing and analysis, ISSTA ’08, ACM, New York, NY, USA, 2008, pp. 261–272. URL: http:
//doi.acm.org/10.1145/1390630.1390662. doi:10.1145/1390630.1390662.

[35] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, Z. Su, Dynamic test input
generation for web applications, in: Proceedings of the 2008 international symposium on
Software testing and analysis, ISSTA ’08, ACM, New York, NY, USA, 2008, pp. 249–260.
URL: http://doi.acm.org/10.1145/1390630.1390661. doi:10.1145/1390630.1390661.

[36] S. Elbaum, S. Karre, G. Rothermel, Improving web application testing with user session
data, in: Proceedings of the 25th International Conference on Software Engineering, ICSE
’03, IEEE Computer Society, Washington, DC, USA, 2003, pp. 49–59. URL: http://dl.acm.
org/citation.cfm?id=776816.776823.

[37] S. Sampath, A. Souter, L. Pollock, Towards defining and exploiting similarities in Web appli-
cation use cases through user session analysis, IEE Seminar Digests 2004 (2004) 17–24.

[38] Z. Qian, Test Case Generation and Optimization for User Session-based Web Application
Testing, Journal of Computers 5 (2010).

[39] R. Binder, Testing object-oriented systems: Models, patterns, and tools, Addison-
Wesley,Reading, MA, 1999.

[40] J. Offutt, S. Liu, A. Abdurazik, P. Ammann, Generating test data from state-based specifi-
cations, Software Testing, Verification and Reliability 13 (2003) 25–53.

[41] P. Chevalley, P. Thenod-Fosse, A mutation analysis tool for Java programs, International
Journal on Software Tools for Technology Transfer (STTT) 5 (2003) 90–103. 10.1007/s10009-
002-0099-9.

[42] Y.-S. Ma, Y.-R. Kwon, J. Offutt, Inter-class mutation operators for java, in: Proceedings
of the 13th International Symposium on Software Reliability Engineering, ISSRE ’02, IEEE
Computer Society, Washington, DC, USA, 2002, pp. 352–. URL: http://dl.acm.org/citation.
cfm?id=851033.856285.

[43] P. E. Black, V. Okun, Y. Yesha, Mutation Operators for Specifications, in: Proceedings of the
15th IEEE international conference on Automated software engineering, ASE ’00, IEEE Com-
puter Society, Washington, DC, USA, 2000, pp. 81–88. URL: http://dl.acm.org/citation.cfm?
id=786768.786981.

69

[44] J. Offutt, Y.-S. Ma, Y.-R. Kwon, The class-level mutants of MuJava, in: Proceedings of
the 2006 international workshop on Automation of software test, AST ’06, ACM, New York,
NY, USA, 2006, pp. 78–84. URL: http://doi.acm.org/10.1145/1138929.1138945. doi:10.1145/
1138929.1138945.

[45] J. Offutt, Y. Wu, Modeling presentation layers of web applications for testing, Software and
Systems Modeling 9 (2010) 257–280. 10.1007/s10270-009-0125-4.

[46] M. Harman, P. McMinn, A theoretical & empirical analysis of evolutionary testing and
hill climbing for structural test data generation, in: Proceedings of the 2007 international
symposium on Software testing and analysis, ISSTA ’07, ACM, New York, NY, USA, 2007,
pp. 73–83. doi:10.1145/1273463.1273475.

[47] B. Korel, Automated software test data generation, IEEE Trans. Softw. Eng. 16 (1990)
870–879.

[48] P. McMinn, M. Harman, K. Lakhotia, Y. Hassoun, J. Wegener, Input domain reduction
through irrelevant variable removal and its effect on local, global, and hybrid search-based
structural test data generation, Software Engineering, IEEE Transactions on 38 (2012) 453–
477.

[49] N. Tracey, J. Clark, K. Mander, J. McDermid, An automated framework for structural test-
data generation, in: Proceedings of the 13th IEEE international conference on Automated
software engineering, ASE ’98, IEEE Computer Society, Washington, DC, USA, 1998, pp.
285–288.

[50] G. Navarro, A Guided Tour to Approximate String Matching, ACM Computing Surveys 33
(1999) 2001.

[51] M. Alshraideh, L. Bottaci, Search-based software test data generation for string data using
program-specific search operators: Research Articles, Softw. Test. Verif. Reliab. 16 (2006)
175–203.

[52] L. K. Shar, H. B. K. Tan, Defending against cross-site scripting attacks, IEEE Computer 45
(2012) 55–62.

[53] J. Cho, H. Garcia-Molina, Parallel crawlers, in: Proceedings of the 11th International Confer-
ence on World Wide Web, WWW ’02, ACM, New York, NY, USA, 2002, pp. 124–135. URL:
http://doi.acm.org/10.1145/511446.511464. doi:10.1145/511446.511464.

[54] R. C. Miller, K. Bharat, SPHINX: a framework for creating personal, site-specific Web
crawlers, Comput. Netw. ISDN Syst. 30 (1998) 119–130.

[55] C. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, M. F. Schwartz, The harvest information
discovery and access system, Computer Networks and ISDN Systems 28 (1995) 119–125.

[56] U. Manber, M. Smith, B. Gopal, WebGlimpse: combining browsing and searching, in:
Proceedings of the annual conference on USENIX Annual Technical Conference, ATEC 97,
USENIX Association, Berkeley, CA, USA, 1997, pp. 15–15. URL: http://dl.acm.org/citation.
cfm?id=1268680.1268695.

[57] E. V. Nova, D. Lindsay, Our Favorite XSS Filters and How to Attack Them, 2009. http://www.
blackhat.com/presentations/bh-usa-09/VELANAVA/BHUSA09-VelaNava-FavoriteXSS-SLIDES.pdf.

[58] K. Moody, M. Palomino, SharpSpider: Spidering the Web through Web Services, in: Proceed-
ings of the First Conference on Latin American Web Congress, LA-WEB ’03, IEEE Computer
Society, Washington, DC, USA, 2003, pp. 219–. URL: http://dl.acm.org/citation.cfm?id=
951953.952400.

[59] D. Richardson, M. Thompson, The RELAY model of error detection and its application, in:
Software Testing, Verification, and Analysis, 1988., Proceedings of the Second Workshop on,
IEEE, 1988, pp. 223–230.

70

[60] L. Morell, Theoretical insights into fault-based testing, in: Software Testing, Verification,
and Analysis, 1988., Proceedings of the Second Workshop on, 1988, pp. 45–62. doi:10.1109/
WST.1988.5353.

[61] G. Gheorghiu, A look at Selenium, Software Quality Engineering 7 (2005) 38–44.

[62] A. Mesbah, E. Bozdag, A. v. Deursen, Crawling AJAX by inferring user interface state
changes, in: Proceedings of the 2008 Eighth International Conference on Web Engineering,
ICWE ’08, IEEE Computer Society, Washington, DC, USA, 2008, pp. 122–134. URL: http:
//dx.doi.org/10.1109/ICWE.2008.24. doi:10.1109/ICWE.2008.24.

[63] A. Mesbah, A. van Deursen, S. Lenselink, Crawling Ajax-based web applications through
dynamic analysis of user interface state changes, ACM Trans. Web 6 (2012) 3:1–3:30.

[64] B. P. Miller, G. Cooksey, F. Moore, An empirical study of the robustness of MacOS appli-
cations using random testing, in: Proceedings of the 1st international workshop on Random
testing, RT ’06, ACM, New York, NY, USA, 2006, pp. 46–54. URL: http://doi.acm.org/10.
1145/1145735.1145743. doi:10.1145/1145735.1145743.

[65] P. Godefroid, N. Klarlund, K. Sen, DART: directed automated random testing, SIGPLAN
Not. 40 (2005) 213–223.

[66] A. J. Offutt, J. H. Hayes, A semantic model of program faults, SIGSOFT Softw. Eng. Notes
21 (1996) 195–200.

[67] L. de Moura, N. Bjørner, Z3: An Efficient SMT Solver, in: C. Ramakrishnan, J. Re-
hof (Eds.), Tools and Algorithms for the Construction and Analysis of Systems, volume
4963 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, Berlin, Heidel-
berg, 2008, pp. 337–340. URL: http://dx.doi.org/10.1007/978-3-540-78800-3_24. doi:10.
1007/978-3-540-78800-3_24.

[68] A. Biere, A. Cimatti, E. Clarke, O. Strichman, Y. Zhu, Bounded model checking, Advances
in Computers 58 (2003).

[69] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, D. R. Engler, EXE: Automatically Gen-
erating Inputs of Death, ACM Trans. Inf. Syst. Secur. 12 (2008) 10:1–10:38.

[70] E. Schwartz, T. Avgerinos, D. Brumley, All you ever wanted to know about dynamic taint
analysis and forward symbolic execution (but might have been afraid to ask), in: Security
and Privacy (SP), 2010 IEEE Symposium on, IEEE, 2010, pp. 317–331.

[71] J. Newsome, D. X. Song, Dynamic taint analysis for automatic detection, analysis, and
signature generation of exploits on commodity software, in: NDSS, The Internet Society,
2005.

[72] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, P. Barham, Vigilante:
End-to-end containment of internet worms, in: ACM SIGOPS Operating Systems Review,
volume 39, ACM, 2005, pp. 133–147.

[73] K. Sen, Concolic testing, in: Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, ASE ’07, ACM, New York, NY, USA, 2007,
pp. 571–572. doi:10.1145/1321631.1321746.

[74] K. Sen, D. Marinov, G. Agha, CUTE: a concolic unit testing engine for C, in: Proceed-
ings of the 10th European software engineering conference held jointly with 13th ACM SIG-
SOFT international symposium on Foundations of software engineering, ESEC/FSE-13, ACM,
New York, NY, USA, 2005, pp. 263–272. URL: http://doi.acm.org/10.1145/1081706.1081750.
doi:10.1145/1081706.1081750.

[75] V. Ganesh, D. Dill, A Decision Procedure for Bit-Vectors and Arrays, in: W. Damm, H. Her-
manns (Eds.), Computer Aided Verification, volume 4590 of Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, 2007, pp. 519–531.

71

[76] A. Futoransky, E. Gutesman, A. Waissbein, A dynamic technique for enhancing the security
and privacy of web applications, in: Proc. Black Hat USA, 2007.

[77] M. Harold, R. Gupta, M. Soffa., A methodology for controlling the size of a test suite,
Transactions on Software Engineering and Methodologies 2 (1993) 270–285.

[78] W. Dickinson, D. Leon, A. Podgurski., Pursuing failure: the distribution of program failures
in a profile space., in: In Proceedings of the 8th European Software Engineering Conference,
ACM Press, 2001, pp. 246–255.

[79] X. Luo, F. Ping, M.-H. Chen, Clustering and Tailoring User Session Data for Testing Web
Applications, in: Software Testing Verification and Validation, 2009. ICST ’09. International
Conference on, 2009, pp. 336 –345. doi:10.1109/ICST.2009.51.

[80] R. Godin, R. Missaoui, H. Alaoui, Incremental Concept formation algorithms based on Galois
Concept Lattices, Computational Intelligence 11 (1995) 246–267.

[81] Y. Wu, J. Offutt, X. Du, Modeling and testing of dynamic aspects of Web applications, Tech-
nical Report ISE-TR-04-01, Department of Information and Software Engineering, George
Mason University, 2004.

[82] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, A. Halevy, Google’s Deep Web
crawl, Proc. VLDB Endow. 1 (2008) 1241–1252.

72

