Alignment of Low Information Sequences

home1 home2
 Bib
 Algorithms
 Bioinfo
 FP
 Logic
 MML
 Prog.Lang
and the
 Book

Bioinformatics
 Alignment
 Compression
  & alignment
David R. Powell, Lloyd Allison, Trevor I. Dix and David L. Dowe.
Alignment of Low Information Sequences.
Australian Computer Science Theory Symposium (CATS98), pp.215-230, Springer-Verlag (isbn:981-3083-92-1), 1998.

Abstract: Alignment of two random sequences over a fixed alphabet can be shown to be optimally done by a Dynamic Programming Algorithm (DPA). It is normally assumed that the sequences are random and incompressible and that one sequence is a mutation of the other. However, DNA and many other sequences are not always random and unstructured, and the issue arises as how to best align compressible sequences.

Assuming our sequences to be non-random and to emanate from mutations of a first order Markov model, we note that alignment of high information regions is more important than alignment of low information regions and arrive at a new alignment method for low information sequences which performs better than the standard DPA for data generated from mutations of a first order Markov model.

Keywords: Sequence Alignment, DNA, Biology, Information Theory.

[preprint.ps]['98], [preprint.ps]['98].

Coding Ockham's Razor, L. Allison, Springer

A Practical Introduction to Denotational Semantics, L. Allison, CUP

Linux
 Ubuntu
free op. sys.
OpenOffice
free office suite
The GIMP
~ free photoshop
Firefox
web browser

© L. Allison   http://www.allisons.org/ll/   (or as otherwise indicated),
Faculty of Information Technology (Clayton), Monash University, Australia 3800 (6/'05 was School of Computer Science and Software Engineering, Fac. Info. Tech., Monash University,
was Department of Computer Science, Fac. Comp. & Info. Tech., '89 was Department of Computer Science, Fac. Sci., '68-'71 was Department of Information Science, Fac. Sci.)
Created with "vi (Linux + Solaris)",  charset=iso-8859-1,  fetched Friday, 03-May-2024 12:35:04 AEST.